-
هندسه نتاری
هندسه نتاری
اقلیدس 28 قضیه نخست اصول خود را بر اساس چهار اصل موضوع نخست اثبات کرد و از قضیه 29 بود که استفاده از اصل پنجم آغاز میشود.
در واقع پس از آن که اصل توازی موجب انشقاق هندسه شد ریاضیدانها هندسهٔ بدون استفاده از اصل توازی ابداع کردند که به آن هندسهٔ نتاری میگویند. اگر به خواهیم بر اساس "مبانی هندسه" هیلبرت تعریف خود را گسترش دهیم. هندسهٔ نتاری مربوط به آن قضایای میشود که با استفاده از بنداشتهای وقوع، میانبود، قابلیت انطباق و پیوستگی و بدون استفاده از بنداشت توازی ثابت شوند.
یانوش بویویی به این نوع هندسه، هندسهٔ مطلق میگفت اما و. پرنوویچ و م. جردن نام نتاری را برای آن برگزیدند.
برچسب برای این موضوع
مجوز های ارسال و ویرایش
- شما نمی توانید موضوع جدید ارسال کنید
- شما نمی توانید به پست ها پاسخ دهید
- شما نمی توانید فایل پیوست ضمیمه کنید
- شما نمی توانید پست های خود را ویرایش کنید
-
قوانین انجمن