بالا
 تعرفه تبلیغات




 دانلود نمونه سوالات نیمسال دوم 93-94 پیام نور

 دانلود نمونه سوالات آزمونهای مختلف فراگیر پیام نور

صفحه 1 از 3 123 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 از مجموع 23

موضوع: کمیت‌های فیزیکی

  1. #1
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض کمیت‌های فیزیکی

    دید کلی

    هر چیز که قابل افزایش و کاهش باشد و نیز بتوان تساوی میان دو مقدار از آن را به دقت بیان کرد کمیت فیزیکی است. در واقع سنگ بنای علم فیزیک کمیت فیزیکی است. و ما برای بیان قوانین فیزیک از آنها استفاده می‌کنیم، مثل طول ، جرم ، نیرو و حجم ، یک کمیت فیزیکی مانند جرم را وقتی می‌توان تعریف کرد که برای اندازه‌ گیری آن واحدی مانند کیلوگرم در نظر گرفته شود.

    تعداد کمیتهای فیزیکی آنقدر زیاد است که مرتب کردن آنها مساله مشکلی است و این کمیتها مستقل از هم نیستند. از میان تمام کمیتهای فیزیکی ممکن است چند کمیت را مشخص کنیم و آنها را کمیت اصلی بنامیم و بقیه کمیتها را از این کمیتهای اصلی بدست آوریم و برای هر یک استانداردی در نظر بگیریم، مثلا اگر طول را کمیت اصلی انتخاب کنیم، قد را به عنوان استاندارد آن در نظر می‌گیریم.
    یکای (واحد) اندازه گیری

    یکی از جنبه‌های مشترک بین همه اندازه گیری وجود یک یکای اندازه گیری است. مقدار کمیت مورد نظر چند برابر کمیتی است که از همان جنس که به عنوان مقیاس انتخاب شده ، این مقیاس را یکا (یا واحد) آن کمیت می‌نامند. دانشمندان برای آنکه رقمهای حاصل از اندازه گیریهای مختلف یک کمیت باهم مقایسه پذیر باشند، در نشستهای بین المللی توافق کرده‌اند که برای هر کمیت یکای معینی تعریف کنند. یکای هر کمیت باید به گونه‌ای انتخاب شود که در شرایط فیزیکی تعیین شده تغییر نکند و در دسترس باشد، مجموعه یکاهای مورد توافق بین المللی را به اختصار یکای SI می‌نامند.
    کمیت اصلی و فرعی


    • کمیت اصلی: آن دسته از کمیتهایی را که یکاهای آنها بطور مستقل تعریف شده‌اند کمیت اصلی ، یکاهای آنها را یکاهای اصلی می‌نامند.
    • کمیت فرعی: کمیتهای از قبیل مساحت ، حجم ، کمیتی است که به یک یا چند کمیت اصلی وابسته است.

    کمیت اسکالر و برداری




    • کمیت برداری: کمیت برداری کمیتی است که برای بیان آن علاوه بر انداره باید راستا ، جهت و نقطه اثر آن نیز در دست باشد، مانند: نیرو ، شتاب ، شدت میدان الکتریکی ، اندازه حرکت ، گشتاور نیرو ، تغییر مکان و ... .
    • کمیت اسکالر: به کمیتی گفته می‌شود که با یک عدد و یک یکا بطور کامل مشخص می‌شود و از اینرو فقط دارای بزرگی هستند. کمیتهای اسکالر ، کمیتهای نرده‌ای نیز نامیده می‌شود. سایر کمیتهای نرده‌ای طول ، زمان ، چگالی ، انرژی ، دما ، پتانسیل و ... .

    نحوه نمایش کمیت برداری و اسکالر


    • کمیت برداری: کمیتهای برداری را با پاره خط جهتدار (پیکان) نمایش می‌دهند. پیکان را هم جهت با بردار و طول آنرا متناسب با بزرگی بردار در نظر می‌گیرند () مانند d ، بزرگی یک بردار را توسط یک خط قائم که در دو طرف نماد آن بردار می‌گذارند مانند ׀ d ׀ و یا با نماد بدون پیکان مشخص می‌کنند d.

      >
    • کمیت اسکالر: کمیت اسکالر عدد است و نیازی به نحوه نمایش ندارد.

    جمع برداری

    برای یافتن برآیند دو بردار و می‌توانیم از یک نقطه دو بردار به ترتیب برابر بردارهای و رسم کنیم، سپس متوازی الاضلاع را که این دو بردار ، دو ضلع مجاور آن را تشکیل می‌دهد کامل کنیم، بردار برآیند قطری از متوازی الاضلاع است که نقطه شروع دو بردار را به رأس روبرو وصل می‌کند. این قاعده متوازی الاضلاع برای جمع بردارها است.
    تفریق بردای

    برای بدست آوردن تفریق دو بردار نخست دو بردار و را از یک نقطه رسم می‌کنیم. برداری که ابتدای آن بر انتهای بردار و انتهای آن بر انتهای بردار منطبق باشد بردار حاصله است.
    ابعاد کمیت

    منظور از ابعاد یک کمیت فرعی ، رابطه آن با کمیت اصلی تشکیل دهنده آن است. در واقع می‌توان گفت که منظور از ابعاد یک کمیت معرفی آن کمیت از نظر ماهیت طبیعی آن است. برای این منظور در مکانیک ابعاد سه کمیت اصلی طول ، جرم و زمان را به ترتیب با M ، L و T نشان می‌دهند.



    منبع : دانشنامه رشد
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  2. #2
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض

    آنتالپی

    تغییرات آنتالپی


    معمولا تغییرات آنتالپی واکنش‌ها را در دستگاه‌های آنالیز مورد سنجش قرار می‌دهند.
    تغییرات آنتالپی در واکنش‌های گرماگیر

    در واکنش گرماگیر این تغییرات مثبت است یعنی آنتالپی سیستم در صورتی که واکنش گرماگیر باشد افزایش خواهد یافت.
    تغییرات آنتالپی در واکنش‌های گرمازا

    تغییرات آنتالپی واکنش گرمازا منفی است یعنی آنتالپی سیستم هایی که در آنها واکنش گرمازا انجام می‌شوند کاهش می‌یابد.
    آنتالپی و انرژی درونی

    آنتالپی با انرژی درونی مرتبط است. مقدار کار مربوط به تغییر حجم نمونه ناشی از فشار سیستم تفاوت این دو را موجب می‌شود.
    روش اندازه‌گیری تغییرات آنتالپی

    تغییرات آنتالپی را با استفاده از روش کالریمتری سنجشی مقیاسی تعیین می‌کنند و از مشتق آن مقدار ظرفیت حرارتی ویژه نمونه را به دست می‌آورند.






    منبع : دانشنامه آزاد ویکی پدیا
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  3. #3
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض اختلاف پتانسیل الکتریکی

    اختلاف پتانسیل الکتریکی یا ولتاژ الکتریکی عبارتست از مقدار کار لازم برای جابجا کردن واحد بار از نقطه‌ای به نقطه دیگر: V=W/Q یکای آن در سیستمSI برابر است با ولت(V) یا ژول بر کولن(j/c)
    ارتباط ولتاژ با میدان الکتریکی

    کار انجام شده برای بار Q عبارتست از: میدان الکتریکی پیرامون × مقدار بار × فاصله : V=W/Q ٌٌٌW=F.d F=E.Q W=E.Q.d V=E.Q.d/Q V=E.d واحد میدان الکتریکی ولت بر متر است(V/m). توضیح آنکه در تعریف ولتاژ، مقدار کار خود به خودی لحاظ نمی‌شود. مثلاً اگر برای جابجایی بار q کار w خود به خود انجام شود، بایستی در تعریف آن مقدار کار w- را لحاظ کرد.






    منبع : دانشنامه آزاد ویکی پدیا
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  4. #4
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض انرژی

    انرژی (از واژه یونانی ἐνεργός به معنی فعالیت) یا کارمایه، در فیزیک و دیگر علوم، یک کمیت بنیادین فیزیکی است. در کتاب‌های درسی فیزیک انرژی را به صورت توانایی انجام کار تعریف می‌کنند. تا به امروز گونه‌های متفاوتی از انرژی شناخته شده که با توجه به نحوهٔ آزادسازی و تاثیر گذاری به دسته‌های متفاوتی طبقه‌بندی می‌شوند از آن جمله می‌توان انرژی جنبشی، انرژی پتانسیل، انرژی گرمایی، انرژی الکترومغناطیسی، انرژی شیمیایی و انرژی هسته‌ای را نام برد.
    طبق نظریهٔ نسبیت مجموع"جرم و انرژی" پایدار و تغییر ناپذیر است (و آن را قانون بقای جرم و انرژی نامند)؛ بدین معنا که انرژی از شکلی به شکل دیگر و یا به جرم تبدیل شود ولی هرگز تولید یا نابود نمی‌شود. بر طبق تئوری نور بقای جرم و انرژی پیامدی از این اصل است که قوانین فیزیکی در طول زمان بدون تغییر باقی می‌نامند. انرژی هر جسم (طبق نسبیت خاص) جنبش ذرات بنیادی آن جسم است و مقدار آن از معادله معروف اینشتاین بدست میآید: (باید توجه کرد که این معادله تنها انرژی موجود ذرات را بدست می‌دهد و نه دیگر گونه‌های انرژی (مانند جنبشی یا پتانسیل).

    انرژی خورشیدی (حاصل جوشش هسته‌ای اتمهای هیدروژن.


    تاریخچه

    اصل بقای انرژی در حدود ۱۸۵۰ پایه گذاری شد. منشاء این اصل همانگونه که در مکانیک بکار می‌رود توسط کار گالیله و اسحاق نیوتن فهمانیده شد. در واقع هنگامیکه کار بعنوان حاصلضرب نیرو و تغییر مکان تعریف می‌شود، این تعریف تقریبا بطور خود کار از قانون دوم حرکت نیوتن تبعیت می‌کند. چنین مفهومی تا سال ۱۸۲۶ یعنی زمانیکه ریاضی دان معروف فرانسوی معرفی شد، وجود نداشت. لغت نیرو (از نظر لاتین) نه تنها از نقطه نظر مفهوم آن توسط نیوتن در قوانین حرکتش توصیف شد، بلکه در کمیت‌هایی که اکنون بعنوان کار و انرژی کنیتک (جنبشی)و پتانسیل (نهفته) تعریف می‌شوند بکار می‌روند. این ابهام برای مدت زمانی توسعه هر اصل کلی را در مکانیک در ورای قوانین حرکت نیوتنی مسدود نموده بود.
    تعریف کار

    روابط مفید و متعددی از تعریف کار بعنوان یک کمیت و موجودیت فیزیکی روشن ، تبعیت می نماید. در صورتیکه بر جسمی با جرم معین نیرویی در خلال یک فاصله زمانی دیفرانسیلی اعمال شود و در آن تغییر مکان ایجاد نماید ، کار انجام شده بتوسط نیرو بوسیله معادله dW = Fdl داده می‌شود که زمانیکه با قانون دوم نیوتن ترکیب شود خواهد شد : dW = madl با تریف شتاب a = du / dt که u سرعت جسم است ، خواهیم داشت

    که ممکن است چنین نوشته شود :

    از آنجائیکه بر حسب تعریف سرعت ، معادله برای کار : dw = mudu حال از این معادله ممکن است برای یک تغییر معین از سرعت اولیه (u1) تا سرعت نهائی (u2)انتگرالگیری نمود
    : معادله (۱)
    انرژی جنبشی

    هریک از کمیت های در معادلات بالا یک انرژی جنبشی Ek است، ترمی که بوسیله لورد کلوین در 1859 معرفی شد

    معادله مبین این نکته است که کار انجام شده برروی جسم در شتاب دادن آن از یک سرعت اولیه به سرعت نهائی معادل تغییر در انرژی جنبشی جسم می‌باشد. بر عکس چنانچه یک جسم متحرک توسط عمل یک نیروی مقاوم کند شود ، کار انجام شده بوسیله جسم معادل تغییرش در انرژی جنبشی خواهد بود . در دستگاه بین المللی آحاد که جرم به کیلوگرم و سرعت به متر بر ثانیه است ، انرژی جنبشی دارای واحد گیلوگرم در مجذور ثانیه بر مجذور ثانیه می‌باشد از آنجائیکه کیلوگرم متر بر مجذور ثانیه به واحد نیوتن بیان می‌شود ، انرژی جنبشی به نیوتن متر یا ژول بیان می‌گردد که همان واحد کار خواهد بود .

    در دستگاه بین المللی آحاد که جرم به کیلوگرم و سرعت به متر بر ثانیه است ، انرژی جنبشی دارای واحد گیلوگرم در مجذور ثانیه بر مجذور ثانیه می‌باشد از آنجائکه کیلوگرم متر بر مجذور ثانیه به واحد نیوتن بیان می‌شود ، انرژی جنبشی به نیوتن متر یا ژول بیان می‌گردد که همان واحد کار خواهد بود . در دستگاه مهندسی انگلیسی ، انرژی جنبشی به بیان می‌شود . بنابراین واحد انرژی جنبشی در این دستگاه عبارت خواهد بود از

    در اینجا برای هماهنگی ابعاد ، قراردادن ثابت بعدی gc ضروری است.
    انرژِی پتانسیل

    چنانچه جسمی با جرم معینی از یک ارتفاع اولیه z1 به ارتفاع نهائی z2 بالا رود ، نیروئی حداقل معادل وزنش در جهت بالا باید بر آن اعمال شود
    در این معادله شتاب ثقل از محلی به محل دیگر متفاوت است .حداقل کار لازم برای بالا بردن جسم، حاصلضرب این نیرو و تغییر ارتفاع خواهد بود
    : معادله(۲) از معادله بالا مشاهده می نمائیم که کار انجام شده بر روی جسم برای بالا بردن آن معادل تغییر در انرژی پتانیسل (Ep) است. بر عکس ، چنانچه جسمی در برابر یک نیروی مقاوم معادل وزنش پایین آورده شود ، کار آنجام شده بوسیله جسم برار تغییر در انرژی پتانسیل می‌باشد . معادله (۱) شکل مشابهی با معادله (۲) دارد و هر دو مبین این واقعیت هستند که کار انجام شده معادل تغییر در کمیتی است که شرایط جسم را در ارتباط با محیطش توسیف می نمایید . در هر دو حالت کار انجام شده را می‌توان به وسیله معکوس نمودن فرایند و بازگرداندن جسم به شرایط اولیه اش بازیابی نمود .این مشاهده طبیعتا به این تصور منتهی می‌شود که چنانچه کار اعمال شده بر روی جمس در شتاب دادن آن و یا در بالا بردن آن را بتوان بازیابی نمود ، پس این جسم به وسیله خاصیتی چون سرعتش و یا ارتفاعش باید دارای استعداد و یا ظرفیت انجام این کار باشد این فرضیه در مکانیک جسم جامد آنچنان به خوبی ثایت شده است که ظرفیت یک جسم برای انجام کار نام انرژی به دادن اختصاص یافته است ،نامی که از لغت یونانی اقتباس شده و به معنی انجام کار است و بنابراین کار شتاب دهده یک جسم باعث تغییر در انرژی جنبشی آن می‌شود

    و کار انجام یافته بر روی یک جسم برای بالا آن باعث تغییر در انرژی پتانسیل آن می‌شود ، و یا

    بنابراین انرژی پتانسیل چنین تعریف می‌شود :
    در دستگاه بین المللی آحاد ، که جرم به کیلوگرم ،ارتفاع به متر و شناب ثقل به متر بر مجذور ثانیه است، انرژی پتانسیل دارای واحد کیلوگرم-مجذور متر بر مجذور ثانیه است. این همان نیوتن متر و یا ژول که واحد کار است می‌باشد.
    در دستگاه مهندسی انگلیسی ، واحد انرژی پتانسیل فوت در پوند نیرو خواهد بود

    این بار نیز ثابت بعدی gc برای هماهنگی ابعاد اضافه می‌شود .
    اصل بقای جرم و انرژی

    در هر یک از آزمایشات فرآیندهای فیزیکی ، تلاش برای یافتن یا تعریف کردن کمیت هایی است که بدون توجه به تغییرات رخ داده شده ، ثابت باقی بمانند . یک چنین کمیتی که قبلا در توسعه مکانیک شناخته شده اشت ، جرم می‌باشد . استفاده مهم قانون بقای جرم بعنوان یک اصل کلی در علم پیشنهاد می نماید که اصول بیشتر بقاء می باید دارای مقدار قابل مقایسه‌ای باشد. بنابراین توسعه مفهوم انرژی بطور منطقی منتهی به اصل بقایش در فرایندهای مکانیکی شد . در صورتیکه به جسمی در هنگام بالا رفتن انرژی داده شود ، پس از آن این جسم می باید این انرژی را در خود نگهدارد تا کاری را که قادر است انجام دهد . جسمی که صعود نموده و مجاز به سقوط آزاد است ، آنقدر انرژی جنبشی کسب می نماید که بهمان اندازه انرژی پتانسیل از دست می‌دهد بطوریکه ظرفیت آن برای انجام کار بدون تغییر باقی می ماند . برای یک جسم در حال سقوط آزاد ، می‌توان نوشت :
    اعتبار این معادله بوسیله تجربیات بی شماری تائید شده است . موفقیت در کاربرد آن برای اجسام در حال سقوط آزاد منتهی به تعمیم اصل بقای انرژی برای استفاده در همه فرآیندهای مکانیکی خالص شده است . شواهد تجربی فراوانی تاکنون برای تایید این تعمیم حاصل گردیده است.
    اشکال دیگری از انرژی مکانیکی علاوه بر انرزی جنبشی و پتانسیل جاذبه‌ای امکانپذیر است . واضح ترین آنه انرژی پتانسیل آرایش ساختمانی است. هنگامیکه فنری فشرده شود ، کار توسط یک نیروی خارجی صورت می‌گیرد . از آنجائیکه فنر بعدا می‌تواند این کار را علیه یک نیروی مقاوم خارجی انجام دهد، پس فنر دارای ظرفیت انجام کار است . این انرژی پتانسیل آرایش ساختمانی است . انرژی شکل مشابهی در یک نوار لاستیکی کشیده شده و یا در یک میله کج شده در ناحیه الاستیکی موجود است .
    برای افزایش عمومیت اصل بقای انرژی در مکانیک ، ما به کار بالاخص بعنوان شکلی از انرژی می نگریم . این بطور وضوح مجاز است زیرا تغییرات انرژی جنبشی و پتانسیل معادل کار انجام گرفته در تولید آنهاست (معادلات ۱ و ۲) . در هر حال کار انرژی در انتقال است و هرگز در یک جسم باقی نمی ماند . هنگامیکه کاری انجام گیرد لکن همزمان جای دیگری کار ظاهر نشود ، بشکل دیگری از انرژی تبدیل می‌شود .
    جسم یا مجتمعی که توجه بر روی آن متمرکز می‌شود دستگاه (system) نامند . به هر چیز دیگری محیط (surrounding) اطلاق می‌گردد. زمانیکه کاری صورت می‌گیرد،این کار بوسیله محیط بر روی دستگاه و یا بالعکس انجام می‌شود و انرژی از محیط به دستگاه و یا بالعکس انتقال می‌یابد فقط در خلال این انتقال است که شکلی از انرژی بعنوان کار موجود می‌باشد . بر عکس ، انرزی جنبشی و پتانسیل در جسم ذخیره می‌شود . مقادیرشان به هر حال در مقایسه با محیط اندازه گیری می‌شود . بعنوان مثال انرژی جنبشی تابعی از سرعت نسبت به محیط است و انرژی پتانسیل تابعی از ارتفاع نسبت به یک سطح مقایسه می‌باشد . تغییرات در انرژی جنبشی و پتانسیل تابعی از این شرایط مقایسه نیست مشروط بر آنکه آنها ثابت باشند .


    انرژی الکتریکی

    چنانچه جریان الکتریکی از یک مقاومت عبور کند، انرژی الکنریکی به گرما تبدیل میشود. اگر جریان از یک وسیله برقی عبور کند، مقداری از انرژی الکتریکی به انواع دیگر انرژی تبدیل میگردد (و مقداری از آن همواره با تبدیل شدن به گرما هدر میرود). مقدار انرژی یک حریان الکتریکی به روشهای مخنلف قابل بیان است
    در فرمول فوق U اختلاف پتانسیل الکتریکی بر حسب ولت است




    به نقل از ویکی پدیا


    منابع


    • ترمودینامیک مهندسی شیمی ، موئلف : جی ام اسمیت ، اچ سی ونس ؛ ترجمه منصور کلباسی

    شابک : ۶-۰۲-۶۰۹۶-۹۶۴

    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  5. #5
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض

    بار الکتریکی



    الکترومغناطیس الکتریسیته · مغناطیس

    بار الکتریکی (q) از خواص بنیادین ماده ‌است که به ذرات نسبت داده می‌شود.
    علامت بار الکتریکی

    بار الکتریکی فقط به صورت مضارب صحیح مثبت و منفی از بار یک الکترون ( − e) وجود دارد:


    که در آن C، مخفف واحد بار، کولن می‌باشد.






    به نقل از ویکی پدیا

    منابع


    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  6. #6
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض بَسامَد


    مثالی از یک تابع دوره‌ای با بسامد روبه‌افزایش


    بَسامَد یا فِرکانس یا تَواتُر به اندازه‌گیری تعداد دفعاتی‌گویند که یک رویداد تناوبی در واحد زمان اتفاق می‌افتد. برای محاسبه بسامد باید یک بازه زمانی را مشخص کرده، تعداد رخ دادن یک رویداد را در آن بازه زمانی شمرده و سپس این شماره را بر مدت آن بازه زمانی تقسیم کرد.. راه دیگر محاسبه بسامد، اندازه‌گیری زمان میان دو رویداد پیاپی (تناوب) و سپس اندازه‌گیری بسامد به عنوان وارونه این زمان است: رابطه بسامد به این گونه‌است:
    در این فرمول T همان تناوب است.
    فرکانس اندازه گیری تعداد تکرار اتفاقی در واحد زمان است. برای محاسبه فرکانس بر روی یک بازه زمانی ثابت، تعداد دفعات وقوع یک حادثه را در آن بازه می شماریم و سپس این تعداد را بر طول بازه زمانی تقسیم می کنیم. پس از فیزیک دان آلمانی هاینریش رودولف هرتز، در سیستم واحدهای SI فرکانس با هرتز(Hz) اندازه گیری می‌شود. یک هرتز به این معنی است که یک واقعه یک بار بر ثانیه رخ می‌دهد.
    واحدهای دیگری که برای اندازه گیری فرکانس بکار می‌روند به این شرح هستند: سیکل بر ثانیه، دور بر دقیقه (rpm). سرعت قلب توسط واحد ضربان بر دقیقه اندازه گیری می‌شود. یک روش جایگزین برای محاسبه فرکانس، اندازه گیری زمان بین دو رخداد متوالی حادثه‌ای است (دوره تناوب) و سپس محاسبه فرکانس به صورت عددی متقابل این زمان مانند زیر:
    که در آن T دوره تناوب است.

    فرکانس امواج در اندازه گیری فرکانس صدا، امواج الکترومغناطیسی (مانند امواج رادیویی یا نور )، سیگنال های الکتریکی یا دیگر امواج، فرکانس بر حسب هرتز، تعداد سیکل های شکل موج تکراری است. اگر موج یک صدا باشد، فرکانس آن چیزی است که زیر و بمی این موج را مشخص می‌کند.
    فرکانس رابطه معکوسی با مفهوم طول موج دارد. فرکانس f برابر است با سرعت v یک موج تقسیم بر طول موج &lambdaاست که:
    در موارد خاص که امواج الکترومغناطیسی از خلا عبور می‌کنند، v=c که در آن c برابر سرعت نور در خلا است و این عبارت به صورت زیر در می‌آید:


    فرکانس های آماری

    در علم آمار فرکانس یک واقعه برابر است با تعداد دفعات رخ دادن یک حادثه در آزمایش یا مطالعه‌ای که صورت می‌گیرد است. فرکانس ها معمولاً به صورت گرافیکی در نمودار هیستوگرام نمایش داده می‌شوند.






    منبع : ویکی پدیا
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  7. #7
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض الکتریسیته

    الکتریسیته، برگرفته شده از کلمه یونانی: ήλεκτρον ، اثری است که به دلیل موجودیت بار الکتریکی پدید می‌آید و همراه با مغناطيس یکی از نیروهای پایه در فیزیک به نام الکترومغناطیس را تشکیل می‌دهد.




    تاریخچه


    الکتریسیته شاخه‌ای از فیزیک می‌باشد که به مطالعهٔ ویژگی‌های آثار و انتقال بارهای الکتریکی می‌پردازد. الکتریسیته از واژهٔ یونانی الکترون، به معنی کهربا گرفته شده است. نخستین بار، تالس، دانشمند یونانی در نوشته‌های خود خاصیت کهربا را معرفی کرده است. در زمان تالس در طی تحقیقات او مشخص شده بود که هرگاه کهربا را با پارچهٔ پشمی مالش دهند، اجسام سبک مانند کاه را به خود جذب می‌کند.
    دو هزار سال پیش، اطلاعات انسان دربارهٔ الکتریسیته به همان خاصیت کهربا محدود می‌شد تا آنکه ویلیام گیلبرت، پزشک انگلیسی با انتشار کتابی با نام درباره مغناطیس به شرح تفاوت میان نیروهای مغناطیسی و نیروهای الکتریکی پرداخت و فصل جدیدی را با انتشار این کتاب در در دنیای الکتریسیته باز نمود.
    در سال ۱۶۶۳، اتوفون گوریکه اولین ماشین مولد الکتریسیته را ساخت و ۱۵۰ سال بعد از او شارل دوفی، به وجود دو نوع بار الکتریکی پی برد و بنجامین فرانکلین دو اصطلاح بار مثبت و بار منفی را برای آن‌ها به کار برد.
    الساندر ولتا، فیزیکدان ایتالیایی، در سال ۱۷۷۵ الکتروفور را برای انتقال الکتریسیته ساکن ایجاد نمود و در سال ۱۸۰۱ پیل الکتریکی را پس از آن اختراع کرد. با اختراع پیل الکتریکی امکان ایجاد جریان برق فراهم گشت و در نتیجه آن امکان آزمایش‌های گونانی فراهم شد که از حاصل آن می‌توان به کشف اثر مغناطیسی جریان الکتریکی توسط هانس کریستیان ارستد اشاره کرد که بعدها توسط آندره آمپر مورد مطالعه بسیار قرار گرفت.
    کمی بعد مایکل فارادی شیمی‌دان و فیزیکدان برجسته انگلیسی، مولد مغناطیسی الکتریسیته را اختراع نمود. در سال ۱۸۸۰ نخستین نیروگاه مولد برق توسط توماس ادیسون در نیویورک، راه اندازی شد و توانست بخشی از شهر نیویورک را روشن کند. نیروگاه برق ادیسون جریان مستقیم تولید می‌کرد، در نتیجه مشکل انتقال جریان وجود داشت، تا آنکه در سال‌های بعد،‌ نیروگاه جریان متناوب به کار افتاد و الکتریسیته اهمیت ویژه‌ای در علم و صنعت پیدا نمود.






    منبع : از ویکی‌پدیا، دانشنامهٔ آزاد

    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  8. #8
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض الکترومغناطیس

    الکترومغناطیس شاخه‌ای از علم فیزیک است که به مطالعهٔ پدیده‌های الکتریکی و مغناطیسی و ارتباط این دو با هم می‌پردازد. توصیف‌گر پدیده‌های الکترومغناطیسی در فیزیک کلاسیک قوانین ماکسول است.
    تعریف

    الکترومغناطیس مطالعه تأثیرات بارهای ساکن و متحرک است.طبق نظریه الکترومغناطیسی ماکسول هرذره باردار متحرک ازخودانرزی ساطع می‌کند
    کمیات اساسی در الکترومغناطیس

    کمیات مدل الکترومغناطیس به دو گروه تقسیم می‌شود: کمیات منبع و کمیات میدان
    کمیات منبع



    کمیات میدان





    منبع : ویکی پدیا
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  9. #9
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض آهنربا

    به اشیایی که میدان مغناطیسی تولید کنند، آهنرُبا گفته می‌شود.

    معنای لغوی

    آهنربا از دو بخش آهن و -ربا از فعل ربودن تشکیل شده. کاربرد واژه‌هایی مانند آهنربا و کهربا در فارسی پیشینه طولانی دارد.
    برابر اروپایی آن: اولین شرح مغناطش به یونانیان قدیم باز می‌گردد که این اسم را به مغناطیس دادند. این اسم از مگنزیا که نام یک دهکدهٔ یونانی است، مشتق شده‌است. از لحاظ لغوی Magnet به معنی «سنگی از اکسید منیزیم» است. این سنگ حاوی مگنتیت (Fe۲O۳) بود و هنگام مالش آن به آهن، آن را آهنربا می‌کرد. نظریهٔ دیگر این است که این واژه از ریشهٔ واژهٔ فارسی «مگ» می‌باشد و این واژه magnet به همراه واژهٔ magic از ریشهٔ واژهٔ پارسی mag می‌باشند، که خود برگرفته از مغان ایران است.[۱]





    اثر آهنربا بر حوزه‌های مغناطیسی



    چینش آنتی‌فرومغناطیس







    حوزه‌های مغناطیسی در ماده فرومغناطیس

    تاریخچه

    تلاش جدی برای استفاده از قدرت پنهان مواد مغناطیسی بسیار پس از کشف آن انجام شد. به عنوان مثال در قرن ۱۸ام با ادغام تکه‌های کوچک مواد مغناطیسی تکهٔ بزرگ‌تری بدست آمد که مشخص شد توانایی بلند کردن قابل توجهی دارد.
    پس از اینکه اورستد در سال ۱۸۲۰ کشف کرد که جریان الکتریکی می‌تواند میدان مغناطیسی به وجود آورد، پیشرفت‌های زیادی در این زمینه حاصل شد.


    استورگن دانش خودش را با موفقیت برای ساخت اولین آهنربای الکتریکی در سال ۱۸۲۵ بکار برد. با اینکه دانشمندان زیادی (از قبیل گاوس، ماکسول و فارادی) با این پدیده از دیدگاه تئوریک درگیر شدند، اما توصیف درست مواد مغناطیسی به فیزیکدانان قرن ۲۰ ام نسبت داده می‌شود.
    کیوری و ویس در شفاف‌سازی پدیدهٔ مغناطش دائمی و وابستگی دمایی آن موفق بودند. ویس فرضیهٔ وجود حوزه‌های مغناطیسی را مطرح کرد تا توضیح دهد که مواد چگونه می‌توانند آهنربا شده یا خاصیت مغناطیسی کل آنها صفر شود.
    جزئیات خواص دیواره‌های این حوزه‌های مغناطیسی توسط بلوچ، لاندو و نیل بررسی شد.



    چینش فری‌مغناطیس




    آزمایش اورستد





    جداساز دستی مغناطیسی مواد معدنی سنگین


    کاربرد



    آهنرباها کاربردهای زیادی در اسباب بازی‌ها دارند. میله‌های مغناطیسی M شکل، برای ساخت شکل‌های گوناگون به گوی‌های فلزی متصل شده‌اند


    مواد مغناطیسی جزء جدانشدنی فناوری مدرن هستند. آهنرباها یکی از اجزای مهم بسیاری از وسایل الکترونیکی و الکترومکانیکی هستند. کاربرد عمدهٔ آهنرباهای دائم در تبدیل انرژی مکانیکی به انرژی الکتریکی و بالعکس است. (مانند موتورهای الکتریکی و ژنراتورها) مغناطیس‌ها همچنین در حافظه‌های مغناطیسی (صفحات هارد دیسک و فلاپی‌دیسک‌ها و کارت‌های پلاستیکی حافظه)
    همچنین آهن‌رباها در صنایع مختلف جهت جداسازی ضایعات آهن کاربرد فراوان دارند.






    به نقل از ویکی پدیا

    پانویس


    1. ‎ Walker Atkinson, William, Mind Power: The Secret of Mental Magic, Published by Kessinger Publishing, 1997, ISBN 0-7661-0091-X, 9780766100916 , Page 122.

    ‎‎



    منابع



    • Buschow, K.H.J., de Boer, F.R., Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2004.



    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

  10. #10
    moo2010 آواتار ها
    • 1,499

    عنوان کاربری
    مدیر بازنشسته بخش فیزیک
    تاریخ عضویت
    Mar 2010
    محل تحصیل
    پشت دریاها
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    فیزیک اتمی و ملکولی
    راه های ارتباطی

    پیش فرض میدان الکتریکی

    برای تعریف میدان الکتریکی در یک نقطه معین از فضا ، یک بار الکتریکی مثبت به اندازه واحد در آن نقطه قرار داده ، سپس مقدار نیروی الکتریکی وارد بر این واحد بار را به عنوان شدت میدان الکتریکی تعریف می‌کنند. بار مثبت را نیز به عنوان بار آزمون تعریف می‌کنند. به بیان دقیقتر می‌توان میدان الکتریکی را به صورت حد نسبت نیروی الکتریکی وارد بر یک بار آزمون بر اندازه بار آزمون ، زمانی که مقدار بار آزمون به سمت صفر میل می‌کند، تعریف کرد.
    مقدمه

    از قانون کولن می‌دانیم که دو بار الکتریکی بر یکدیگر نیرو وارد می‌کنند. این نیرو را می‌توان با استفاده از مفهوم جدیدی به نام میدان الکتریکی توضیح داد، یعنی واسطه‌ای که بارهای الکتریکی بواسطه آن بر یکدیگر نیرو وارد می‌کنند. به بیان دیگر هر بار الکتریکی در فضای اطراف خود یک میدان الکتریکی ایجاد می‌کند که هرگاه بار الکتریکی دیگری در محدوده این میدان قرار گیرد، بر آن نیروی وارد می‌شود.

    معمولا خطوط میدان الکتریکی در اطراف هر بار الکتریکی با استفاده از مفهوم خطوط نیرو نشان داده می‌شود. به عنوان مثال اگر یک بار الکتریکی نقطه‌ای مثبت را در نقطه‌ای از فضا در نظر بگیریم، در این صورت خطوطی از این نقطه به طرف خارج رسم می‌شوند. این خطوط بیانگر جهت میدان الکتریکی هستند. همچنین با استفاده از چگالی خطوط میدان الکتریکی می‌توان به شدت میدان الکتریکی نیز پی برد.




    علت بسیار کوچک بودن بار آزمون

    فرض کنید یک توزیع بار با چگالی حجمی یا سطحی معین در یک نقطه از فضا قرار دارد و ما می‌خواهیم میدان الکتریکی حاصل از این توزیع بار را در یک نقطه معین پیدا کنیم. اگر چنانچه مقدار بار آزمون خیلی کوچک نباشد، به محض قرار دادن بار آزمون در نزدیکی توزیع بار ، توزیع بار حالت اولیه خود را از دست داده و تحت تاثیر بار مثبت آزمون قرار می‌گیرد. لذا فرض بسیار کوچک بودن بار آزمون بدین خاطر است که بتوانیم از اثرات بار آزمون بر توزیع بار صرفنظر کنیم. البته با تعریف میدان بصورت حد نیرو بر بار زمانی که بار به صفر میل می‌کند، این اشکال رفع می‌شود.
    مشخصات میدان الکتریکی

    میدان الکتریکی کمیتی برداری است، یعنی در میدان الکتریکی علاوه بر مقدار دارای جهت نیز می‌باشد. برداری بودن این کمیت را می‌توان از تعریف آن نیز فهمید. چون میدان الکتریکی را به صورت نسبت نیرو بر بار تعریف کردیم و نیز چون نیرو بردار است، لذا میدان الکتریکی نیز بردار خواهد بود. میدان الکتریکی در داخل یک جسم رسانا همواره برابر صفر است.

    چون اگر درون جسم رسانا میدان الکتریکی وجود داشته باشد، در این صورت بر همه بارهای درون آن نیرو وارد می‌شود. این نیرو باعث به حرکت در آمدن بارهای آزاد می‌شود. حرکت بار را جریان می‌گویند. بنابراین در اثر ایجاد جریان در داخل جسم رسانا بارها به سطح آن منتقل می‌شوند، باز میدان درون آن صفر می‌شود. در بیشتر موارد میدان الکتریکی از نظر اندازه و جهت از یک نقطه به نقطه دیگر تغییر می‌کند. اما اگر چنانچه اندازه جهت میدان در منطقه‌ای ثابت باشد، در این صورت میدان الکتریکی را یکنواخت یا ثابت می‌گویند.




    میدان الکتریکی حاصل از یک بار نقطه‌ای

    فرض کنید که یک بار الکتریکی به اندزه 'q در نقطه‌ای از فضا که با بردار مکان 'r مشخص می‌شود، قرار داشته باشد. حال می‌خواهیم میدان الکتریکی حاصل از این بار را در نقطه دیگری که با بردار مکان (r) مشخص می‌شود، تعیین کنیم. طبق تعریف یک بار نقطه‌ای مثبت آزمون در این نقطه قرار می‌دهیم. فرض کنید که اندازه بار آزمون (q) باشد. در این صورت از طرف بار q بر این بار آزمون نیرویی وارد می‌شود که از قانون کولن بصورت زیر محاسبه می‌شود.


    F = 1/4πε0 X q'q/(r-r')2

    محاسبه می‌شود. چون نیروی F یک کمیت برداری است، لذا علاوه بر اینکه مقدار آن از رابطه گفته شده حاصل می‌شود، دارای یک جهت نیز هست که جهت آن با رابطه|(r-r')/|(r-'r) نشان داده می‌شود. در واقع این کمیت یک بردار یکه است. حال اگر نیروی F را بر (q) تقسیم کنیم، کمیتی حاصل می‌شود که همان میدان الکتریکی است. یعنی اگر میدان الکتریکی را با E نشان دهیم، در این صورت میدان الکتریکی حاصل از بار نقطه‌ای به فاصله 'r از مبدا از رابطه زیر محاسبه می شود.
    |'F=1/4πε0xq'q(r-r')3/|r-r

    میدان الکتریکی حاصل از توزیعهای مختلف بار

    اگر چنانچه بجای بار نقطه‌ای یک توزیع بار به صورت حجمی یا سطحی وجود داشته باشد و یا اینکه چندین بار نقطه‌ای وجود داشته باشد و بخواهیم میدان حاصل از اینها را محاسبه کنیم، برای این منظور در مورد چند بار نقطه‌ای ، میدان حاصل از هر بار را تعیین نموده و همه را بصورت برداری جمع می‌کنیم. اما در مورد توزیع بارها باید از یک رابطه انتگرالی استفاده کنیم. بدیهی است که در مورد توزیع حجمی بار انتگرال حجمی بوده و در مورد توزیع سطحی بار ، انتگرال سطحی خواهد بود.
    محاسبه نیروی الکتریکی با استفاده از میدان الکتریکی

    اگر بخواهیم مقدار نیروی الکتریکی را که از طرف یک توزیع بار بر بار دیگری که در یک نقطه معین قرار دارد محاسبه کنیم، کافی است که میدان الکتریکی حاصل از توزیع بار را در نقطه معین تعیین کرده ، مقدار نیروی وارده را از حاصلضرب میدان الکتریکی در اندازه باری که نیروی وارده بر آن را محاسبه می‌کنیم، مشخص کنیم.



    منبع : دانشنامه رشد
    حسنت به ازل نظر چو در کارم کرد
    بنمود جمال و عاشق زارم کرد
    من خفته بدم به ناز در کتم عدم
    حسن تو به دست خویش بیدارم کرد

صفحه 1 از 3 123 آخرینآخرین

برچسب برای این موضوع

مجوز های ارسال و ویرایش

  • شما نمی توانید موضوع جدید ارسال کنید
  • شما نمی توانید به پست ها پاسخ دهید
  • شما نمی توانید فایل پیوست ضمیمه کنید
  • شما نمی توانید پست های خود را ویرایش کنید
  •