هدايت الكتريكي عناصر
در تعريف هدايت الكتريكي مي توان گفت : اگر الكترون در باند هدايت قرار گيرد ، آنقدر وابستگي آن از اتم مادر كم مي شود كه مي توان آن را جا به جا كرد ، با جا به جايي اين الكترون جريان الكتريكي ايجاد شده ؛ در نتيجه هدايت الكتريكي خواهيم داشت .
عناصر از لحاظ هدايت الكتريكي به چهار د سته زير تقسيم مي شوند :
1. عايق ها (Insulators) .
2. نيمه هاديها (Semi conductors) .
3. هاديها (Conductors) .
4. ابر رساناها (Super conductors) .
ساختار اتمي اين عناصر از سه نوع باند زير تشكيل شده است :
1. باند ظرفيت (Balance Band ) .
2. باند ممنوعه (Forbidden Band) .
3. باند هدايت (Conductance) .
سطح انرژي اين سه باند رامي توان به صورت زير نشان داد :
باند ظرفيت > باند ممنوعه > باند هدايت .
عايقها :
در عايق ها شكاف انرژي (تفاوت انرژي باند هدايت و باند ظرفيت ) آنقدر بزرگ است كه با دادن انرژي به عنصر ، الكترون هاي باند ظرفيت نمي توانند به باند هدايت بروند در نتيجه هدايت الكتريكي نخواهيم داشت .
هاديها :
در هادي ها شكاف انرژي وجود ندارد . در نتيجه الكترون هاي باند ظرفيت آزادانه در دماي اتاق( ( Room Temperature =300 k به باند هدايت مي روند ؛ بنابراين هدايت الكتريكي در اين نوع عناصر وجود دارد .
نيمه هاديها :
در نيمه هادي ها شكاف انرژي صفر نيست اما در درجه حرارت اتاق معمولا يك الكترون- ولت (كمتر يا بيشتر) مي باشد كه درشرايط خاص مي توان بر آن غلبه كرد و الكترون هاي باند ظرفيت رابه باند هدايت فرستاد تا هدايت الكتريكي ايجاد شود .
ساختمان کریستالی نیمه هادی
همانطور که هادی ها در صنعت امروزی به خصوص در زمینه های حرارتی و برودتی کاربردی ویژه یافته اند عناصر نیمه هادی نیز اهمیت زیادی در صنعت الکترونیک و ساخت قطعات پیدا کرده اند.
هدف اصلی که در الکترونیک آنالوگ دنبال می شود تقویت سیگنالها بدون تغییر شکل آن سیگنال است. همین هدف بشر را به سمت استفاده از نیمه هادی ها در ساخت قطعات تقویت کننده پیش برده است. اما آن چیزی که عملکرد این قطعات را رقم می زند چگونگی حرکت الکترون ها و حفره ها در ساختار کریستالی این عناصر می باشد.
و این مقدمه ای ست برای پیدایش قطعاتی نظیر ترانزیستور ها –دیود ها و...
عامل موثر بر چگونگی حرکت الکترون ها و حفرها چیزی نیست جز درجه حرارت. به طوری که گفته شد درجه حرارت صفر مطلق ساختمان کریستالی نیمه هادی هایی نظیر ژرمانیوم و سیلسکن را تحت تاثیر خود قرار می دهد. یعنی در این درجه حرارت الکترون ها کاملا در باند ظرفیت قرار گرفته و نیمه هادی نظیر یک عایق عمل می کند. (به علت اینکه هیچ الکترون آزادی در باند هدایت خود ندارد).
اگر درجه حرارت افزایش یابد الکترون های لایه ظرفیت انرژی کافی کسب کرده و پیوند کو والانسی خود را شکسته وارد باند هدایت می شوند. به مراتب ای جابه جایی باعث تولید حفره ناشی از الکترون می گردد.
انرژی لازم برای شکستن چنین پیوندی در سیلسکن 1.1(الکترون ولت) و در ژرمانیوم 0.72 (الکترون ولت) می باشد. اهمیت حفره در این است که نظیر الکترون حامل جریان الکتریکی بوده و و نظیر الکترون آزاد عمل می نماید. حال آنکه تا چندی پیش دانشمندان حفره ها را حامل جریام نمی دانستند!
هنگامی که یک پیوند از الکترون خالی شده و حفره ای در آن به وجود می آید در این صورت الکترون های ظرفیت اتمهای مجاور در باند ظرفیت به سادگی قادر به اشغال این حفره هستند. الکترونی که از یک پیوند کووالانسی دیگر این حفره را اشغال می کند خود یک حفره بر جای می گذارد. بنابر این می توان به جای حرکت الکترون های باند ظرفیت تصور نمود که در این باند حفره ها حرکت می نمایند.
حرکت حفره ها بر خلاف حرکت الکترو نها می باشد. حفره جدیدی که به وجود می آید به نوبه خود توسط الکترون دیگری از پیوندی دیگر اشغال شده و بنابراین حفره پله به پله بر خلاف جهت الکترون حرکت می نماید. پس در اینجا با پدیدهی دیگری از هدایت الکتریکی روبه رو خواهیم بود که مربوط به الکترون های آزاد نمی باشد. در این صورت می توان چنین تصور کرد که حفره در جهت عکس الکترون حرکت نموده است . بنابراین حرکت الکترون در باند ظرفیت را می توان معادل حرکت حفره در خلاف جهت آن دانست.
حال میبینیم که چرا با توجه به اینکه حرکت الکترون همان حرکت حفره است از مفهمم حفره استفاده می شود. !با کمی دقت ملاحظه می شود که حرکت حفره حرکت الکترون های باند ظرفیت بوده ولی حرکت الکترون های آزاد در باند هدایت صورت می گیرد و برای بیان این تفاوت بین حرکت الکترون در باند ظرفیت و هدایت از مفهوم حفره کمک می گیریم.
به عنوان مثال فرض می شود که نیمه هادی تحت تاثیر یک میدان خارجی قرار گیرد یعنی به دو سر آن ولتاژی اعمال شود در ایک صورت الکترون های آزاد باند هدایت که تحت تاثیر نیرو های هسته ای اتم ها نیستند در این باند در خلاف جهت میدان اعمال شده حرکت خواهند نمود. انرژی این الکترون ها در جهتی نیست که در باند هدایت قرار گیرد. ولی می توانند در همان باند ظرفیت حرکت کرده و حفره های مجاور خود را اشغال نمایند. بنابر این حرکت این الکترون ها بیشتر از الکترو ن های آزاد به هسته وابسته می باشد. در حقیقت برای هر ولتاژ اعمال شده به دو سر یک نیمه هادی یک الکترون در باند ظرفیت فاصله متوسط کو تاهتری از الکترون های باند هدایت را در فاصله زمانی یکسان طی خواهند نمود.
بنابر این می توان گفت که الکترون های آزاد دارای تحرک بیشتری نسبت به حفره ها هستند. به طوری که گفته شد در درجه حرارت معمولی اتاق تعدادی از پیوند های کو والانسی شکسته سده به ازای شکسته شدن هر پیوند یک الکترون-حفره تولید می شود. الکترون و حفره هر دو حامل های بادار می باشد. با اعمال یک پتانسیل الکتریکی به دو سرهر قطعه ای نیمه هادی این حامل هر دو حرکت نمود ه و جریان به وجود می آورند.
دیدید که این حرکت ها در چگونکی رفتار یک نیمه هادی تا چه میزان می توانند موثر باشند.با پیشرفت علم و تکنولوژی استخراج کشف هر نیمه هادی جدیدی انقلابی عظیم در عصر ارتباطات حاصل می شود.
پيوند كووالانسي نيمه هادي ها
پيوند كووالانسي نيمه هادي ها :
گرچه تعداد زيادي از عناصر داراي خاصيت نيمه هادي الكتريكي هستند ، ولي در اينجا به بررسي عناصر سيليكن و ژرمانيم كه داراي كاربرد وسيعي در الكترونيك مي باشند، مي پردازيم. اين عناصر (سيليكن و ژرمانيم ) عناصر چهار ظرفيتي بوده كه در باند ظرفيت داراي چهار الكترون هستند [تعداد الكترونهاي سيليكن 14 و ژرمانيم 32 است ]. علاوه بر سيليكن و ژرمانيم عناصر ديگر نظير كربن و يا تركيباتي مثل گاليم ، ارسنيد (Ga-As) مي توانند به صورت نيمه هادي مورد استفاده قرار گيرند ، ولي به علت ملاحظات عملي كاربرد سيليكن و ژرمانيم در ساختن قطعات الكتريكي بطور وسيعي افزايش يافته است .
عناصر سيليكن و ژرمانيم هر دو داراي ساختمان كريستالي هستند . ساختمان كريستالي اين عناصر نظير اكثر جامدات ، بصورت سه بعدي و منظم است .
ساختمان سه بعدي كريستالهاي سيليكن و ژرمانيم بصورت هرم چهار گوش مي باشد كه در هر راس آن يك اتم قرار گرفته است.
در اين شبكه كريستالي چهار الكترون ظرفيت هر يك ازا تمها با الكترونهاي ظرفيت اتمهاي مجاور خود به اشتراك گذاشته شده و پيوند ظرفيتي تشكيل مي دهند . بنابراين هر اتم ، ديگر داراي چهار الكترون ظرفيت نبوده بلكه در مدار خارجي آن هشت الكترون مشترك با ساير اتمهاي مجاور قرار خواهد گرفت . اين به اشتراك گذاشتن الكترونها باعث پيوند هر اتم با اتمهاي مجاور خواهد بود . الكترونهايي كه در اين پيوندهاي كووالانسي قرار مي گيرند ، الكترونهاي آزاد نبوده و نمي توانند در هدايت الكتريكي شركت نمايند . اين الكترونها وابسته به هسته هاي اتمي بوده و به اين ترتيب اين عناصر با وجود داشتن جهار الكترون ظرفيت ، داراي هدايت الكتريكي خيلي كمي خواهند بود .
اگر به اتمهاي اين عناصر انرژي كافي داده شود ، در اينصورت بعضي از اين پيوندها شكسته شده و الكترونهاي باند ظرفيت وارد باند هدايت شده و نظير الكترون آزاد عمل مي نمايند و به اين ترتيب هدايت الكتريكي آن افزايش پيدا مي كند .
انرژي لازم براي تحريك اتمها و يا شكستن پيوندهاي كووالانسي مي تواند بصورت انرژي نوراني ، حرارتي و يا الكتريكي به عنصر اعمال شود .
يك نيمه هادي خالص كه در آن الكترونهاي باند ظرفيت تشكيل پيوند كووالانسي مي دهند بصورت يك عايق عمل مي نمايند . در اينحالت سطوح انرژي باند هدايت خالي است . در درجه حرارت اتاق ، انرژي حرارتي كافي براي شكستن بعضي از پيوندهاي ظرفيتي وجود دارد. بنابراين برخي از پيوندها شكسته شده و الكترونهايي آزاد مي شوند . اما اگر نيمه هادي سرد شود و درجه حرارت آن به صفر مطلق برسد ؛ در اينصورت انرژي حرارتي از بين رفته وتمامي الكترونهاي عنصر تشكيل پيونهاي ظرفيتي خواهند داد (مگر اينكه شكل ديگري از انرژي به عنصر اعمال شده باشد ) . در اينحالت عنصر به هيچوجه هدايت نخواهد كرد .
ساخت پیوند p-n
برای ساختن پیوند p-n به یک بخش از یک تک بلور نیمه هادی نا خالصی نوع n و به بخش دیگر نا خالصی نوع p
می افزایند . پیوند ها بسته به چگونگی ایجاد ناحیه ی انتقال از pبه n دردرون تک بلور طبقه بندی می شوند . هنگامی که ناحیه انتقال بسیار باریک باشد , پیوند ناگهانی نامیده می شود . پیوند تدریجی پیوندی است که ناحیه انتقالش در محدوده ی وسیعتری "پخش " شده باشد.
پیوند p-n ناگهانی به وسیله ی آلیاژ سازی و رشد رونشتی تشکیل می شوند . پیوند های تدریجی از طریق نفوذ گازی ناخالصیها یا کشت یونها ساخته می شوند.
رشد رونشستی :
رشد رونشستی یک لایه ی نیمه هادی روی یک پایه ی تک بلور نیمه هادی روشی برای تشکیل ناگهانی است . رشد رونشستی با گرم کردن پولک میزبان ؛ مثلأ سیلیسیم نوع n و عبور دادن جریان کنترل شده ی گازی حاوی تتراکلرید سیلیسیم ((sicl4و هیدروژن از روی سطح انجام می شود . در اثر فعل و انفعال گازها اتمهای سیلیسیم روی سطح پولک میزبان ته نشین می شود . چون معمولأ دما بالاتر از 1000درجه سانتی گراد است ؛ اتمهای ته نشین شده انرژی و قابلیت حرکت کافی دارند تا خود را به طور صحیح با شبکه ی بلور میزبان تطبیق دهند . این عمل سبب می شود که شبکه از روی سطح اصلی به طرف بالا امتداد یابد . سرعت نمونه ای رشد لایه ی رونشستی حدود یک میکرون در هر دقیقه است.
برای تشکیل لایه های نوع n یا p می توان در هنگام رشد رونشستی ؛ انتهای ناخالصی را به شکل ترکیب گازی به گاز حامل اضافه کرد . با رشد دادن یک لایه ی نوع pرونشستی (epi) بر روی یک پولک میزبان نوع n
پک پیوند تقریبأ ناگهانی شکل می گیرد.البته ؛ ترتیبهای دیگر مثل رشد لایه ی نوع n به روش رونشستی روی یک لایه ی نوع p
نیز ممکن است.
فرایند رونشستی به طور وسیع در ساخت مدارهای مجتمع (IC)ها به کار می رود. دیود p-n تشکیل شده در فرایند رونشستی (epi)
به طور معکوس با یاس می شود تا مدار را از پایه (پولک میزبان جدا سازد . اخیرأ از روش رونشستی در شکل دهی ساختارهای SOS
مخفف Si-on_sapphire یا Si-on-spinel
سیلیسیم)روی یاقوت سرخ یا یاقوت کبود ) است. یاقوتهای کبود , ترکیبات گوناگونی از اکسید منیزیم (Mgo)
و اکسیدآلومینیم (Al203) هستند و ارتباط نزدیکی با یاقوت سرخ دارند . به طور خلاصه ناخالصی سیلیسیم به طریق رونشستی بر روی پایه های یاقوت سرخ یا کبود رشد داده می شود .
انگیزه استفاده از پایه های یاقوت سرخ یا کبود , کیفیت عایق بودن این پایه ها در جدا سازی مدارها در طراحی IC های حاوی ادوات سریع ,به خصوص مدارهای مجتمع در مقیاس فشرده (LSI) است .