بالا
 تعرفه تبلیغات




 دانلود نمونه سوالات نیمسال دوم 93-94 پیام نور

 دانلود نمونه سوالات آزمونهای مختلف فراگیر پیام نور

نمایش نتایج: از شماره 1 تا 5 از مجموع 5

موضوع: مقالات مرتبط با فيزيك نوين (کوانتوم ، نسبیت و ... )

Hybrid View

  1. #1
    parnian97 آواتار ها
    • 6

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    Jan 2012
    شغل , تخصص
    ترجمه متون انگلیسی و فرانسوی+تحصیل
    رشته تحصیلی
    دوم ریاضی فیزیک
    راه های ارتباطی

    Icon Gol مقالات مرتبط با فيزيك نوين (کوانتوم ، نسبیت و ... )

    نظريه هاي انيشتن(نسبيت عام و خاص)چيست؟



    انشتين دو نظريه دارد. نسبيت خاص را در سن 25 سالگي بوجود آورد و ده سال بعد توانست نسبيت عام را مطرح كند.

    نسبيت خاص بطور خلاصه تنها نظريه ايست كه در سرعتهاي بالا ( در شرايطي كه سرعت در خلال حركت تغيير نكند--سرعت ثابت-) ميتوان به اعداد و محاسباتش اعتماد كرد. جهان ما جوريست كه در سرعتهاي بالا از قوانين عجيبي پيروي مي كند كه در زندگي ما قابل ديدن نيستند. مثلا وقتي جسمي با سرعت نزديك سرعت نور حركت كند زمان براي او بسيار كند مي گذرد. و همچنين ابعاد اين جسم كوچك تر ميشود. جرم جسمي كه با سرعت بسيار زياد حركت مي كند ديگر ثابت نيست بلكه ازدياد پيدا مي كند. اگر جسمي با سرعت نور حركت كند، زمان برايش متوقف مي شود، طولش به صفر ميرسد و جرمش بينهايت ميشود.

    نسبيت عام براي حركتهايي ساخته شده كه در خلال حركت سرعت تغيير مي كند يا باصطلاح حركت شتابدارند. شتاب گرانش زمين g كه همان عدد 2<9.81m/sاست نيز يك نوع شتاب است. پس نسبيت عام با شتابها كار دارد نه با حركت. نظريه ايست راجع به اجرامي كه شتاب ثقل دارند. كلا هرجا در عالم، جرمي در فضاي خالي باشد حتما يك شتاب جاذبه در اطراف خود دارد كه مقدار عددي آن وابسته به جرم آن جسم مي باشد. پس در اطراف هر جسمي شتابي وجود دارد. نسبيت عام با اين شتابها سر و كار دارد و بيان مي كند كه هر جسمي كه از سطح يك سياره دور شود زمان براي او كند تر ميشود. يعني مثلا، اگر دوربيني روي ساعت من بگذارند و از عقربه هاي ساعتم فيلم زنده بگيرند و روي ساعت آدمي كه دارد بالا ميرود و از سياره ي زمين جدا ميشود هم دوربيني بگذارند و هردو فيلم را كنار هم روي يك صفحه ي تلويزيوني پخش كنند، ملاحظه خواهيم كرد كه ساعت من تند تر كار مي كند. نسبيت عام نتايج بسيار عجيب و قابل اثبات در آزمايشگاهي دارد. مثلا نوري كه به اطراف ستاره اي سنگين ميرسد كمي بسمت آن ستاره خم ميشود. سياهچاله ها هم بر اساس همين خاصيت است كه كار مي كنند. جرم انها بقدري زياد و حجمشان بقدري كم است كه نور وقتي از كنار آنها مي گذرد به داخل آنها مي افتد و هرگز بيرون نمي آيد.

    فرمول معروف اينشتن (دست خط خود انيشتن)

    نظريه نسبيت عام
    همه ما براي يك‌بار هم كه شده گذرمان به ساعت‌فروشي افتاده است و ساعتهاي بزرگ و كوچك را ديده ايم كه روي ساعت ده و ده دقيقه قرار دارند. ولي هيچگاه از خودمان نپرسيده ايم چرا؟ انيشتين در نظريه نسبيت خاص با حركت شتابدار و يا با گرانش كاري نداشت. اولين موضوعات را در نظريه نسبيت عام خود كه در 1915 انتشار يافت مورد بحث قرار داد.نظريه نسبيت عام ديد گرانشي را بكلي تغيير داد و در اين نظريه جديد نيروي گرانش را مانند خاصيتي از فضا در نظر گرفت نه مانند نيرويي بين اجرام ، يعني برخلاف آنچه كه نيوتن گفته بود !در نظريه او فضا در مجاورت ماده كمي انحنا پيدا مي‌كرد. در نتيجه حضور ماده اجرام ، مسير يا به اصطلاح كمترين مقاومت را در ميان منحنيها اختيار مي‌كردند. با اين كه فكر انيشتين عجيب به نظر مي‌رسيد مي‌توانست چيزي را جواب دهد كه قانون ثقل نيوتن از جواب دادن آن عاجز مي ماند.سياره اورانوس در سال 1781 ميلادي كشف شده بود و مدارش به دور خورشيد اندكي ناجور به نظر مي‌رسيد و يا به عبارتي كج بود !

    نيم قرن مطالعه اين موضوع را خدشه ناپذير كرده بود.بنابر قوانين نيوتن مي بايست جاذبه اي برآن وارد شود. يعني بايد سياره اي بزرگ در آن طرف اورانوس وجود داشته باشد تا از طرف آن نيرويي بر اورانوس وارد شود.در سال 1846 ميلادي اختر شناس آلماني دوربين نجومي خودش را متوجه نقطه اي كرد كه « لووريه» گفته بود و بي هيچ ترديد سياره جديدي را در آنجا ديد كه از آن پس نپتون نام گرفت.نزديك ترين نقطه مدار سياره عطارد به خورشيد در هر دور حركت ساليانه سياره تغيير ميكرد و هيچ گاه دوبار پشت سر هم اين تغيير در يك نقطه خاص اتفاق نمي‌افتاد.اختر شناسان بيشتر اين بي نظمي ها را به حساب اختلال ناشي از كشش سياره هاي مجاور عطارد مي دانستند !مقدار اين انحراف برابر 43 ثانيه قوس بود. اين حركت در سال 1845 به وسيله « لووريه» كشف شد بالاخره با ارائه نظريه نسبيت عام جواب فراهم شد اين فرضيه با اتكايي كه بر هندسه نااقليدسي داشت نشان داد كه حضيض هر جسم دوران كننده حركتي دارد علاوه برآنچه نيوتن گفته بود.وقتي كه فرمولهاي انيشتين را در مورد سياره عطارد به كار بردند، ديدند كه با تغيير مكان حضيض اين سياره سازگاري كامل دارد. سياره هايي كه فاصله شان از خورشيد بيشتر از فاصله تير تا آن است تغيير مكان حضيضي دارند كه به طور تصاعدي كوچك مي شوند.اثر بخش‌تر از اينها دو پديده تازه بود كه فقط نظريه انيشتين آن‌را پيشگويي كرده بود. نخست آنكه انيشتين معتقد بود كه ميدان گرانشي شديد موجب كند شدن ارتعاش اتمها مي شود و گواه بر اين كند شدن تغيير جاي خطوط طيف است به طرف رنگ سرخ! يعني اينكه اگر ستاره اي بسيار داغ باشد و به طوري كه محاسبه مي كنيم بگوييم كه نور آن بايد آبي درخشان باشد در عمل سرخ رنگ به نظر مي‌رسد كجا برويم تا اين مقدار قواي گرانشي و حرارتي بالا را داشته باشيم، پاسخ مربوط به كوتوله هاي سفيد است.دانشمندان به بررسي طيف كوتوله هاي سفيد پرداختند و در حقيقت تغيير مكان پيش بيني شده را با چشم ديدند! اسم اين را تغيير مكان انيشتيني گذاشتند. انيشتين مي گفت كه ميدان گرانشي شعاع هاي نور را منحرف مي‌كند چگونه ممكن بود اين مطلب را امتحان كرد.اگر ستاره اي در آسمان آن سوي خورشيد درست در امتداد سطح آن واقع باشد و در زمان كسوف خورشيد قابل رؤيت باشد اگر وضع آنها را با زماني كه فرض كنيم خورشيدي در كار نباشد مقايسه كنيم خم شدن نور آنها مسلم است. درست مثل موقعي كه انگشت دستتان را جلوي چشمتان در فاصله 8 سانتيمتري قرار دهيد و يكبار فقط با چشم چپ و بار ديگر فقط با چشم راست به آن نگاه كنيد به نظر مي رسد كه انگشت دستتان در مقابل زمينه پشت آن تغيير جا مي‌دهد ولي واقعاً انگشت شما كه جابجا نشده است!

    دانشمندان در موقع كسوف در جزيره پرنسيپ پرتغال واقع در آفريقاي غربي ديدند كه نور ستاره ها به جاي آنكه به خط راست حركت كنند در مجاورت خورشيد و در اثر نيروي گرانشي آن خم مي شوند و به صورت منحني در مي آيند. يعني ما وضع ستاره ها را كمي بالاتر از محل واقعيش مي‌بينيم.ماهيت تمام پيروزيهاي نظريه نسبيت عام انيشتين نجومي بود ولي دانشمندان حسرت مي كشيدند كه اي كاش راهي براي امتحان آن در آزمايشگاه داشتند.ـ نظريه انيشتين به ماده به صورت بسته متراكمي از انرژي نگاه مي كرد به همين خاطر مي گفت كه اين دو به هم تبديل پذيرند يعني ماده به انرژي و انرژي به ماده تبديل مي شود. E = mc²دانشمندان به ناگاه جواب بسياري از سؤالها را يافتند. پديده راديواكتيوي به راحتي توسط اين معادله توجيه شد. كم كم دانشمندان متوجه شدند كه هر ذره مادي يك پادماده مساوي خود دارد و در اينجا بود كه ماده و انرژي غير قابل تفكيك شدند.تا اينكه انيشتين طي نامه اي به رئيس جمهور آمريكا نوشت كه مي توان ماده را به انرژي تبديل كنيم و يك بمب اتمي درست كنيم و آمريكا دستور تأسيس سازمان عظيمي را داد تا به بمب اتمي دست پيدا كند. براي شكافت هسته اتم اورانيوم 235 انتخاب شد. اورانيوم عنصري است كه در پوسته زمين بسيار زياد است. تقريباً 2 گرم در هر تن سنگ! يعني از طلا چهارصد مرتبه فراوانتر است اما خيلي پراكنده.در سال 1945 مقدار كافي براي ساخت بمب جمـع شـده بود و ايـن كار يعني ساختن بمب در آزمايشگاهــي در « لوس آلاموس » به سرپرستي فيزيكدان آمريكايي « رابرت اوپنهايمر » صورت گرفت. آزمودن چنين وسيله اي در مقياس كوچك ناممكن بود. بمب يا بايد بالاي اندازه بحراني باشد يا اصلاً نباشد و در نتيجه اولين بمب براي آزمايش منفجر شد. در ساعت 5/5 صبح روز 16 ژوئيه 1945 برابر با 25 تيرماه 1324 و نيروي انفجاري برابر 20 هزار تنT.N.T آزاد كرده دو بمب ديگر هم تهيه شد. يكي بمب اورانيوم بنام پسرك با سه متر و 60 سانتيمتر طول و به وزن 5/4 تن و ديگري مرد چاق كه پلوتونيم هم داشت. اولي روي هيروشيما و دومي روي ناكازاكي در ژاپن انداخته شد. صبح روز 16 اوت 1945 در ساعت 10 و ده دقيقه صبح شهر هيروشيما با يك انفجار اتمي به خاك و خون كشيده شد. با بمباران هيروشيما جهان ناگهان به خود آمد، 160000 كشته در يك روز وجدان خفته فيزيكدانها بيدارر شد! « اوپنهايمر» مسئول پروژه بمب و ديگران از شدت عذاب وجدان لب به اعتراض گشودند و به زندان افتادند.انيشتين اعلام كردكه اگر روزي بخواهم دوباره به دنيا بيايم دوست دارم يك لوله كش بشوم نه يك دانشمند!

  2. #2
    parnian97 آواتار ها
    • 6

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    Jan 2012
    شغل , تخصص
    ترجمه متون انگلیسی و فرانسوی+تحصیل
    رشته تحصیلی
    دوم ریاضی فیزیک
    راه های ارتباطی

    پیش فرض

    علم فيزيک به چند زير شاخه تقسيم مي شوند که برخي از آنها از نظر اهميت و فراگيري و ميزان تاثيرشان در بقيه ي شاخه ها برجسته تر و متمايز ترند.

    مثلا در تقسيم بندي دانشگاهي دروس فيزيک سه درس مکانيک تحليلي، الکترو مغناطيس و مکانيک کوانتومي دروس اصلي محسوب مي شوند هر چند که در کنار اين ها بسياري دروس ديگر مانند نسبيت، حالت جامد، مکانيک آماري، ترموديناميک، ابر رسانايي، نجوم و ... تدريس مي شود.

    همان طور که مشاهده مي کنيد از بين سه سر فصل اصلي دروس فيزيک که همان زير شاخه هاي اصلي و مهم فيزيک هستند دو مورد به مکانيک مربوط است. همين طور در ميان دروس ديگر ذکر شده نيز اين واژه چندين بار تکرار شده است (نسبيت در حقيقت مکانيک نسبيتي است).

    اين تکرار نشان از اهميت فوق العاده ي اين شاخه و گستردگي بيش از حد آن دارد. اين شاخه انقدر گسترده شده که امروزه با عنواني جداگانه و به عنوان يک رشته ي مهندسي مجزا از فيزيک در دانشگاه ها تدريس مي شود. اهميت اين شاخه از ان جهت است که بسياري از پديده هايي که به طور طبيعي روزانه در اطراف ما اتفاق مي افتند به اين شاخه مربوط اند و در نتيجه بخش اعظم دانش ما از جهان هم بايد در اين محدوده باشد.

    اما مکانيک چيست؟

    مکانيک علم بررسي حرکت اجسام است. يعني مطالعه ي هر پديده اي که به نوعي حرکتي در آن مشاهده شود ما نيازمند علم مکانيک هستيم. حال اگر حرکت از نوع حرکت هاي معمولي (منظور با سرعت هاي معمولي و اندازه ي اجسام معمولي مانند راه رفت، حرکت اتومبيل و هواپيما، پرتاب موشک و ماهواره، حرکت راکت و توپ تنيس و...) باشد ما از مکانيک کلاسيک استفاده مي کنيم. اين مکانيک که با عنوان نيوتني شناخته مي شود واقعا مرهون کار هاي بسيار بزرگ و شگفت انگيز نيوتن است. واقعا بايد نيوتن را خالق اين علم بدانيم چرا که نيوتن حتي رياضيات لازم براي اين علم را هم خود بوجود اورد. چيزي که ما امروزه با نام حساب ديفرانسيل مي شناسيم.

    اما اگر در سرعت هاي بالا نزديک به سرعت نور کار کنيم از مکانيک نسبيتي استفاده مي کنيم.

    اگر ذرات بسيار ريز باشند و اصطلاحا در محدوده ي ميکروسکوپي باشيم بايد از مکانيک کوانتومي استفاده کنيم و بالاخره اگر هم ذرات ريز باشند و هم پر سرعت بايد ترکيبي از مکانيک کوانتومي و نسبيتي را به کار ببريم يعني کوانتوم نسبيتي يا نسبيت کوانتومي.

    مکانيک چگونه حرکت را بررسي مي کند؟

    در حرکت چند عامل داريم که براي بررسي حرکت لازم است انها را بررسي کنيم:

    1-جابه جايي : ميزان فاصله اي که متحرک طي مي کند

    2-سرعت : ميزان تغييرات فاصله نسبت به زمان

    3- شتاب : ميزان تغييرات سرعت در زمان

    4- نيرو: عامل بوجود اورده شتاب و در نتيجه حرکت

    5- انرژي: توانايي انجام کار و منشا نيرو يعني براي وارد کردن نيرو بايد انرژي داشت.

    و البته فاکتور جرم که در تمام موارد ما حرکت جسمي را بررسي مي کنيم که داراي جرم است.

    حال دو راه براي بررسي حرکت داريم:

    1-اگر سرعت و شتابجسم را در يک لحظه ي معين داشته باشيم، سرعت، شتاب و جابه جايي آن را در لحظات ديگر مي توانيم بدست اوريم. با روابطي که بين اين سه فاکتور يعني جابه جايي، سرعت و شتاب مي توان نوشت تمام انها قابل محاسبه اند. اين روش به سينماتيک معروف است.

    2-اگر نيروهاي وارد بر جسم که عامل حرکت اند را داشته باشيم مي توانيم شتاب و ديگر فاکتور هاي لازم در حرکت را بدست اوريم.اين کار علم ديناميک است.

  3. #3
    parnian97 آواتار ها
    • 6

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    Jan 2012
    شغل , تخصص
    ترجمه متون انگلیسی و فرانسوی+تحصیل
    رشته تحصیلی
    دوم ریاضی فیزیک
    راه های ارتباطی

    پیش فرض

    پاد ماده (ضد ماده)

    ضدماده

    ما انسانها و هر آنچه در اطراف ماست از موجودات زنده زمين و سيارات ، خورشيد و ديگر ستارگان ، همه از ماده ساخته شده‌ايم. اما با تصور وجود يك جهان ديگر كه مانند تصوير آينه‌اي جهان كنوني ما باشد، چه احساسي به شما دست ميدهد؟ البته وجود چنين جهاني پذيرفته نيست. با اين حال جهان ذرات زير اتمي (الكترون ، پروتون ، نوترون ، ...) چنين همتايي دارد و هر يك از اين ذرات براي خود همتايي در آن جهان دارند كه به اصطلاح پاد ذره آن ذرات مينامند.

    تاريخچه

    ديراك فيزيكدان معروف در 1928 چنين استنباط كرد كه همه مواد ميتوانند در دو حالت وجود داشته باشند. وي در آغاز نظريه خود را در مورد الكترون بيان كرد و اظهار داشت كه بايد ذراتي به نام ضد الكترون هم وجود داشته با شد. اين گفته تحقق يافت و فيزيكدان آمريكايي كارل اندرسون در 1932 ضد الكترون و يا پوزيترون را كشف كرد. پس از اكتشاف ديراك و اندرسون ، سرانجام در اكتبر 1955 اييلوگسلر ، فيزيكدان اهل ايتاليا توانست در شتابدهنده بيوترون در آزمايشگاهي در كاليفورنيا پاد پروتون و يك سال بعد 1956 پاد نوترون را آشكار كند. اما دانشمندان پارا فراتر گذاشته و در پي ساخت پاد اتم و پاد مولكول برآمدند.

    مكانيزم

    اينكه اصلا پاد ذرات چيستند ، چه خواصي دارند و در قياس با همتاي ماده‌اي خود چگونه رفتار ميكنند، مدتي فيزيكدان را به خود مشغول كرد؟ ابتدا اين تصور وجود داشت كه پاد ماده در واقع تصويري از ماده در آينه است. اين بدان مناست كه پاذرات ، بايد باري مخالف و هم اندازه و جرمي قرينه جرم تصويري خود در دنياي ماده داشته باشند. بحث بار الكتريكي كاملا پذيرفته شده بود. اما جرم منفي بسيار دشوار مينمايد. ويژگي ديگر پاد ذرات ، ويژگي نابودي در صورت برخورد و تماس با پاد ماده خود است. در اين انهدام مشترك هر دو نابود ميشوند، و به مقدار قابل توجهي انرژي كه بيشتر به صورت پرتوهاي گاما ظاهر ميشود، در ميآيند. البته اگر اين انرژي به اندازه كافي زياد باشد، ميتواند به جفت ماده و پاد ماده ديگري نيز تبديل شود كه اين تصوير خوبي از تبديل ماده و انرژي به يكديگر و بيان فرمول معروف انيشتن است.

    پاد ذرات از برخورد شديد ذرات ديگر بوجود ميآيند. اين وظيفه به عهده شتابدهنده‌ها است. در توضيح اينكه چرا ما بيشتر ماده را ميبينيم تا ضد ماده ، در تاريخ كيهان آمده است. در مرحله دوم از هشت مرحله يا مقطع تاريخ كيهان آمده است كه اولين سنگ بناهاي ماده (مثلا كوارك و الكترون و پاد ذرات آنها) از برخورد پرتوها ، با يكديگر بوجود ميآيند. قسمتي از اين سنگ بناها دوباره با يكديگر برخورد ميكنند و به صورت تشعشع فرو ميپاشند. در لحظه هاي بسيار بسيار اوليه ، ذرات فوق سنگين نيز ميتوانسته‌اند بوجود آمده باشند. اين ذرات داراي اين ويژگي هستند كه هنگام فروپاشي ، ماده بيشتري نسبت ضد ماده (مثلا كوارك‌هاي بيشتري نسبت به آنتي كواركها) ايجاد كنند. ذراتي كه فقط در ميان اولين اجزاي بسيار كوچك ثانيه‌ها وجود داشتند، براي ما ميراث مهمي به جا گذاردند كه عبارت از فزوني ماده در برابر ضد ماده بود.

    آزمايش ساده

    براي تصور جسم منفي ، ماهي باهوشي را تصور كنيد كه به سطح آب ميآيد و به قعر آن نميرود. همچنين فرض كنيد حباب‌هايي از داخل بطري كه در كف اقيانوس قرار دارد به سمت بالا حركت ميكنند. ماهي باهوش با مشاهده حباب‌ها شديدا علاقمند خواهند شد به آن جرمي منفي نسبت دهد. زيرا در خلاف جهت نيروي وارد از سوي جاذبه زمين حركت ميكنند. با اين تصورات ، فيزيكدانان وجود چنين حالتي را براي پاد ماده غير تحمل ميدانند.

    آينده پاد ماده

    نويسندگان داستان غير علمي ، تخيلي بر اين باورند كه ميتوان با استفاده از ماده و پاد ماده ، فضاپيماهايي را به جلو راند. يك فضاپيماي مجهز به موتور ماده - پاد ماده در كسري از مدت زمان كه امروزه يك فضاپيماي مجهز به موتور هيدروژن مايع لازم دارد تا به ستارگان همسايه خورشيد برسد، ما را به آن سوي مرزهاي منظومه شمسي (خورشيدي) خواهد برد. سرعت اين چنين فضاپيمايي در مقايسه با سرعت شاتلهاي فضاهاي كنوني هم ، چون سرعت يك يوزپلنگ در مقابل لاك پشت است. اين فضاپيما ميتواند سفر يازده ماهه جستجوگر سياره بهرام را يك ماهه به انجام رساند. ديگر توانايي پاد ماده در ايجاد سرعتهاي بسيار بالا و نزديك به سرعت نور است. اما اين بار به جاي سفر در كيهان ، سفر در زمان مورد نظر است. اين تصور جديد از زمان ، به ما ميآموزد كه ميتوان با سرعت گرفتن ، نقطه خاصي از فضا- زمان را كمتر منتظر گذاشت و اين همان جايي است كه پاد ماده به كمك ما ميشتابد.

  4. #4
    parnian97 آواتار ها
    • 6

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    Jan 2012
    شغل , تخصص
    ترجمه متون انگلیسی و فرانسوی+تحصیل
    رشته تحصیلی
    دوم ریاضی فیزیک
    راه های ارتباطی

    پیش فرض

    هگز و نظريه سي. پي. اچ



    نظريه سي. پي. اچ. از سه كلمه C , Creation به معني آفرينش (توليد) بوجود آوردن ، P, particles ذرات Higgs تشكيل شده است كه آن را CPH Theory مي ناميم. اما هگز به چه معني است؟

    بسياري از فيزيكدانان اعتقاد دارند بزرگترين چالش فيزيك در قرن بيست و يكم به تحقيقات روي ذرات هگز مربوط مي شود .

    اما سئوال اين است كه اصولاً هگز چيست؟

    كلمه هگز اولين بار در سال 1960 توسط پتر هگز وارد فيزيك شد.

    ايده اساسي چنين است كه تمام ذراتي كه با يكديگر كنش و واكنش دارند، كنش آنها توسط يك ميدان اعمال مي شود كه توسط ذرات هگز بوزون حمل مي شوند.

    توضيح در مورد هگز و اشكالات بيگ بنگ

    لازم است كمي در مورد هگز و اشكالات بيگ بنگ توضيح دهم :

    Higgs هگز

    تئوري هگز در سال 1960 توسط پتر هگز براي توجيح و تشريح ميدانها و نحوه كنش انها مطرح شد. اما قبل از آن بايد كمي در مورد تاريخچه ذرات تبادلي توضيح بدهم .

    پس از آنكه مشخص شد هسته اتم از تعدادي پروتون و نوترون تشكيا مي شود، اين شئوال پيش آمد كه چرا پروتونها كه داراي باز الكتريكي مثبت هستند، در هسته اتم يكديگر را نمي رانند و هسته متلاشي نمي شود؟

    نخستين گام در اين زمينه توسط هايزنبرگ در سال 1932 برداشته شد. وي نظر داد كه پروتونها توسط نيروهاي تبادلي در كنار يكديگر مي مانند. طبق اين طرح پروتونها و نوترونها در داخل اتم پيوسته به يكديگر تبديل مي شوند، بطوريكه يك ذره مورد نظر ابتدا پروتون است، سپس به نوترون تبديل مي شود و دوباره به پروتون تبديل مي شود. براي تصور آن ذره سومي در نظر بگيريد كه دو ذره به تبادل آن مي پردازند. اين ذره به شيوه اي از سوي يك ذره به سوي ذره ي ديگر پرتاب مي شود كه دو ذره را به سوي يكديگر مي راند.

    مي دانيم كه امواج الكترومغناطيسي كوانتيده اند و از كوانتوم هايي تشكيل مي شود كه آن را فوتون مي نامند .

    در حدود سال 1930 اين نظريه مطرح شد كه نيروي الكترومغناطيسي از تبادل فوتون بين دو ذره باردار ناشي مي شود .

    يعني دو ذره باردار با تبادل فوتون (فوتون مجازي) بر يكديگر كنش دارند كه آنها را ذرات تبادلي مي نامند . Exchange Force ذراتي كه نيروها را حمل مي كنند، بوزون ناميده مي شوند و داراي اسپيني برابر يك عدد صفر، يك، دو... مي باشند .

    اين نظريه كه نيروهاي الكتريكي توسط فوتون هاي مجازي منتقل مي شود، انگيزه اي شد تا يوكاوا فيزيكدان ژاپني طرح ذرات تبادلي را در مورد نيروهاي هسته اي بكار برد. يوكاوا با توجه به برد كوتاه نيروهاي هسته اي پيش بيني كرد ذره تبادلي نيروهاي هسته اي داراي جرمي حدود سيصد برابر جرم حالت س### الكترون است كه بعدها چنين ذره اي كشف گرديد و آن را مزون مي نامند .

    هگز تمام ذرات تبادلي را در نظريه خود جمع بندي كرد. بر اساس نظريه هگز نيروها توسط ميدانها اعمال مي شوند كه توسط ذراتي كه آنها را هگز بوزون مي نامند حمل مي شوند. علاوه بر آن هگز تلاش كرد رابطه اي بين فرميونها و بوزنها پيدا كند .

    مشكلات بيگ بنگ

    نظريه بيگ بنگ هنگامي مطرح شد كه مشاهدات هابل از كهكشانها نشان داد كه كهكشانها در حال دور شدن از يكديگر هستند .

    بر اين اساس جهان در حال انبساط است . نظريه بيگ بنگ مدعي است جهان بر اثر يك انفجار مهيب از يك توده بسيار داغ و فوق العاده متراكم بوجود آمده است و در حال انبساط است. در اين مورد كارهاي ژرژ گاموف فيزيكدان روسي قابل تقدير است كه توانسته مراحل مختلف انفجار و انبساط جهان را تشريح كند .

    اما نظريه بيگ بنگ هيچ دليل و توجيهي در مورد علت انفجار ارائه نمي دهد. علاوه بر آن تمركز تمام ماده اي كه در جهان مشاهده مي كنيم در يك حجم بسيار كوچك آنچنان كه نظريه بيگ بنگ ادعا مي كند، قابل توجيه نيست.

    در حاليكه بر اساسي نظريه سي. پي. اچ. جهان بر اثر انفجار يك سياه چاله مطلق (و فوق العاده چگال) كه در آنجا سي. پي. اچ. ها فقط داراي اسپين بوده اند، ايجاد شده است و علت انفجار نيز اسپين سي. پي. اچ. ها بوده است لازم به يادآوري است كه نظريه سي. پي. اچ. نخستين نظريه اي است كه علت بيگ بنگ را بيان مي كند.

  5. #5
    parnian97 آواتار ها
    • 6

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    Jan 2012
    شغل , تخصص
    ترجمه متون انگلیسی و فرانسوی+تحصیل
    رشته تحصیلی
    دوم ریاضی فیزیک
    راه های ارتباطی

    پیش فرض

    اعداد کوانتومی اطلاعات اولیه
    در بررسی ساختار اتم مدلهای مختلفی ارائه شده است. ابتدایی‌ترین این مدلها ، مدل سیاره‌ای رادرفورد است. بعد از مدل سیاره‌ای رادرفورد ، نیلز بوهر مدل جدیدی را ارائه داد (مدل اتمی بوهر). این مدل می‌‌توانست ساختار طیفی اتم هیدروژن را توضیح دهد. در اصل موضوع بوهر که اساس و مبنای مدل بوهر است، فرض می‌‌شود که الکترونها مقیدند در مدارهایی حرکت کنند که در آنها اندازه حرکت الکترون مضرب درستی از h/2π باشد که h ثابت پلانک است. همچنین در این مدل فرض می‌‌شود که ترازهای انرژی کوانتیده‌اند. بعدها که ساختار طیف مربوط به عناصر مختلف مورد توجه قرار گرفت، انرژی هر الکترون در اتم با یک سری اعداد که به عنوان اعداد کوانتومی معروف هستند، مشخص

    اعداد کوانتومی اصلی
    گفتیم که ترازهای انرژی در اتم گسسته هستند. این امر به این معنی است که اگر اتم توسط تابش الکترومغناطیسی بمباران شود، تابش توسط الکترونها جذب می‌‌شود. لذا الکترونها از ترازهای اولیه یا پایه خود تحریک شده و به ترازهای برانگیخته می‌‌روند، اما چون این حالت یک حالت ناپایدار است، لذا الکترون با گسیل تابش از تراز برانگیخته به تراز اولیه خود برمی‌‌گردد. مقدار انرژی جذب شده یا گسیل شده متناسب با فاصله ترازهای انرژی است، یعنی اگر انرژی تراز اولیه را با E و انرژی تراز برانگیخته را با ΄E مشخص کنیم، در این صورت فرکانس نور گسیل شده یا تحریک شده از رابطه E - E΄ = hv حاصل می‌‌شود.

    از طرف دیگر ، چون طبق اصل موضوع بوهر ، اندازه حرکت الکترون باید مضرب صحیحی از h/2π باشد، بنابراین اگر با تقریب مدار حرکت الکترون به دور هسته را دایره‌ای به شعاع r فرض کنیم، در این صورت nh/2π خواهد بود که در این رابطه v سرعت الکترون و m جرم آن است. همچنین با توجه به این که نیروی وارد شده از طرف هسته بر الکترون نیروی مرکزی است، لذا اگر بار هسته را برابر ze بگیریم که در آن z عدد اتمی است، مقدار نیروی وارد بر الکترون برابر ze2/r2 = mv2/r خواهد بود. از ترکیب این روابط می‌‌توان مقدار انرژی الکترون در هر تراز اتمی را بدست آورد.

    در این صورت انرژی از رابطه: E = 1/2mc2/(zα)2 بدست می‌آید که در این رابطه α مقدار ثابتی است که برابر α = 1/137 e2/ћc بوده و ثابت ساختار ریز نامیده می‌‌شود. مقدار n که در رابطه انرژی ظاهر شده است، عدد کوانتومی اصلی نامیده می‌‌شود. البته می‌‌توان مقدار انرژی الکترون در هر تراز را از حل معادله شرودینگر محاسبه کرد. در این صورت نیز رابطه انرژی الکترون در هر تراز برحسب یک عدد کوانتومی که به عدد کوانتومی اصلی معروف است، مشخص می‌‌شود.
    عدد کوانتومی اندازه حرکت زاویه‌ای مداری
    نظریه اتم تک الکترونی بوهر عدد کوانتومی اصلی n را معرفی می‌‌کند که مقدار درست آن انرژی کل اتم را مشخص می‌‌کند. عدد کوانتومی n که یک عدد صحیح و مثبت است، بزرگی اندازه حرکت زاویه‌ای الکترون به دور هسته را بر اساس اصل موضوع بوهر ، طبق رابطه L = nћ مشخص می‌‌کند. ћ عدد ثابتی است که بصورت نسبت ثابت پلانک بر عدد 2π تعریف می‌‌شود، اما از دیدگاه مکانیک موجی درست نیست که برای الکترون یک مسیر مشخص دایره‌ای یا شکل دیگری را در نظر بگیریم. (اصل عدم قطعیت مانع این کار است) و نیز از این دیدگاه قاعده بوهر در مورد کوانتش بزرگی اندازه حرکت زاویه‌ای درست نیست.

    بر خلاف نظریه کلاسیک ، مکانیک موجی نشان می‌‌دهد که بزرگی اندازه حرکت زاویه‌ای مداری (L) یک دستگاه اتمی کوانتیده است و مقادیر ممکن آن می‌‌تواند از رابطه: L = (l(l + 1))1/2ћ بدست آید. در این رابطه l عدد صحیحی است که عدد کوانتومی ‌اندازه حرکت زاویه‌ای مداری نامیده می‌‌شود. برای مقدار مفروض از عدد کوانتومی ‌اصلی n ، مقادیر ممکن l ، اعداد درست از صفر تا n - 1 خواهد بود. به عنوان مثال ، اگر n = 2 باشد، در این صورت l می‌‌تواند مقادیر (1,0) را اختیار کند.

    در نمادگذاری ترازها هر مقدار از l با یک حرف مشخص می‌‌شود. در این نمادگذاری مقدار l = 0 با حرف S و l = 1 با حرف l = 2 ، P با حرف D و ... مشخص می‌‌شود. چون انرژی فقط برحسب عدد کوانتومی ‌اصلی مشخص می‌‌شود، بنابراین در مورد تک الکترونی که تحت تأثیر یک نیروی کولنی از جانب هسته است و در تراز n = 3 قرار دارد، هر سه حالت l = 0 , 1 , 2 دارای انرژی یکسانی خواهند بود.

    اعداد کوانتومی ‌مغناطیسی مداری
    گفتیم که الکترون در اثر نیرویی که از طرف هسته بر آن وارد می‌‌شود، حول هسته می‌‌چرخد. چون الکترون یک ذره باردار است، بنابراین مدار الکترون را می‌‌توان یک مدار مغناطیسی در نظر گرفت. برای این مدار مغناطیسی و در واقع برای الکترون می‌‌توان یک گشتاور دو قطبی مغناطیسی تعریف نمود. این کمیت بر اساس اندازه حرکت زاویه‌ای مداری الکترون تعریف می‌‌شود. یعنی از رابطه μ = eL/2m حاصل می‌‌شود که در آن μ گشتاور دو قطبی مغناطیسی است.

    حال اگر یک میدان مغناطیسی خارجی اعمال شود، در این صورت میدان سعی می‌‌کند تا گشتاور دو قطبی مغناطیسی و به تبع آن L را در راستای میدان قرار دهد، اما در مکانیک موجی بردار اندازه حرکت زاویه‌ای مداری L نمی‌‌تواند هر جهتی را نسبت به میدان مغناطیسی اختیار کند، بلکه محدود به جهتهای به خصوصی است که برای آن مؤلفه بردار اندازه حرکت زاویه مداری ، در راستای میدان مغناطیسی ، مضرب دستی از ћ باشد. بنابراین اگر جهت میدان مغناطیسی را در راستای محور z اختیار کنیم، در این صورت مؤلفه z بردار L از رابطه Lz = ml ћ حاصل می‌‌شود. در این رابطه ml عدد کوانتومی ‌مغناطیسی مداری است. به ازای یک مقدار مفروض l ، m_l می‌‌تواند مقادیر زیر را اختیار کند:



    {ml ={ l , l - 1 , l - 2 , … , 0 , … , - l





    عدد کوانتومی ‌مغناطیسی اسپینی
    در نظریه کوانتومی ‌سه ثابت فیزیک کلاسیک مربوط به حرکت ذره‌ای که تحت تأثیر جاذبه عکس مجذوری قرار دارد، کوانتیده‌اند. این سه ثابت عبارتند از: انرژی ، بزرگی اندازه حرکت زاویه‌ای مداری ، مؤلفه اندازه حرکت زاویه‌ای مداری در یک جهت ثابت از فضا. در مکانیک کوانتومی ‌به این ثابتهای حرکت اعداد کوانتومی n و l و ml نسبت داده می‌‌شوند، اما علاوه بر این سه عدد کوانتومی ، عدد کوانتومی ‌دیگری به نام عدد کوانتومی ‌اسپینی که به مفهوم اسپین الکترون مربوط است، معرفی می‌‌شود.

    در سال 1925/1304 گود اسمیت و اوهلن یک اظهار داشتند که یک اندازه حرکت زاویه‌ای ذاتی ، کاملا مستقل از اندازه حرکت زاویه‌ای مداری ، به هر الکترون وابسته است. این اندازه حرکت ذاتی ، اسپین الکترون نامیده می‌‌شود. چون می‌‌توان آن را با اندازه حرکت ذاتی که هر جسم گسترده بر اساس دوران یا اسپین حول مرکز جرم خود دارد، مانسته داشت. البته لازم به توضیح است که در مکانیک موجی تلقی الکترون به عنوان یک کره ساده با بار الکتریکی صحیح نیست، بلکه صرفا به خاطر مشخص کردن اندازه حرکت زاویه‌ای اسپینی الکترون به کمک مدل قابل تجسم ، بهتر است که آن را به عنوان جسمی که در فضا دارای گسترش است و بطور پیوسته حول یک محور به دور خود می‌‌چرخد، فرض کنیم.

    مانند اندازه حرکت زاویه‌ای مداری در اینجا نیز می‌‌توانیم یک گشتاور مغناطیسی مربوط به حرکت اسپینی الکترون در نظر بگیریم. چنانچه یک الکترون ، با گشتاور مغناطیسی دائمی خود ، در یک میدان مغناطیسی قرار گیرد، انتظار می‌‌رود که اسپین آن کوانتیده فضایی باشد، یعنی گشتاور مغناطیسی اسپینی و اندازه حرکت زاویه‌ای اسپینی به سمت گیری‌های خاصی محدود خواهند بود.

    بنابراین اگر میدان مغناطیسی در راستای محور z فرض شود، در این صورت مؤلفه اندازه حرکت زاویه‌ای اسپینی Lsz در جهت این میدان از رابطه Lsz = msћ حاصل خواهد شد. در این رابطه ms عدد کوانتومی ‌مغناطیسی اسپینی نامیده می‌‌شود. از آنجا که الکترون از دسته فرمیونها می‌‌باشد، بنابراین دارای اسپین نیم فرد خواهد بود، لذا عدد کوانتومی ms فقط می‌‌تواند دو مقدار ممکن 2/1+ و 2/1- را اختیار کند.

برچسب برای این موضوع

مجوز های ارسال و ویرایش

  • شما نمی توانید موضوع جدید ارسال کنید
  • شما نمی توانید به پست ها پاسخ دهید
  • شما نمی توانید فایل پیوست ضمیمه کنید
  • شما نمی توانید پست های خود را ویرایش کنید
  •