بالا
 تعرفه تبلیغات




 دانلود نمونه سوالات نیمسال دوم 93-94 پیام نور

 دانلود نمونه سوالات آزمونهای مختلف فراگیر پیام نور

نمایش نتایج: از شماره 1 تا 10 از مجموع 27

موضوع: >> مجموعه مقالات مربوط به فـــيـزيـــــك نـــور <<

Hybrid View

  1. #1
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    Icon13 >> مجموعه مقالات مربوط به فـــيـزيـــــك نـــور <<

    سلام دوستان
    در اين جا به معرفي مجموعه مقالات مربوط به فـــيـزيـــــك نـــور پرداخته مي شود

    اميدوارم مورد قبول شما قرار بگيرد.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  2. #2
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    فـــيـزيـــــك نـــور(Optics)
    ليزر مخفف عبارت light amplification by stimulated emission of radiation می باشد و به معنای تقويت نور توسط تشعشع تحريک شده است.اولين ليزر جهان توسط تئودور مايمن اختراع گرديد و از ياقوت در ان استفاده شده بود. در سال 1962 پروفسورعلی جوان اولين ليزر گازی را به جهانيان معرفی نمود و بعدها نوع سوم وچهارم ليزرها که ليزرهای مايع و نيمه رسانا بودند اختراع شدند.در سال 1967 فرانسويان توسط اشعه ليزر ايستگاههای زمينی شان دو ماهواره خود را در فضا تعقيب کردند, بدين ترتيب ليزر بسيار کار بردی به نظر آمد.نوری که توسط ليزر گسيل می گردد در يک سو و بسيار پر انرژی و درخشنده است که قدرت نفوذ بالايی نيز دارد بطوريکه در الماس فرو ميرود . امروزه استفاده از ليزر در صنعت بعنوان جوش اورنده فلزات و بعنوان چاقوی جراحی بدون درد در پزشکی بسيار متداول است.

    ليزرها سه قسمت اصلی دارند:
    ۱-پمپ انرژی يا چشمه انرژی: که ممکن است اين پمپ اپتيکی يا شيميايی و ياحتی يک ليزر ديگر باشد
    ۲- ماده پايه وزفعال که نام گذاری ليزر بواسطه ماده فعال صورت ميگيرد
    ۳- مشدد کننده اپتيکی : شامل دو اينه بازتابنده کلی و جزئی می باشد

    طرز کار يک ليزر ياقوتی:
    پمپ انرژی در اين ليزر از نوع اپتيکی ميباشد ويک لامپ مارپيچی تخليه است(flash tube) که بدور کريستال ياقوت مدادی شکلی پيچيده شده(ruby) کريستال ياقوت ناخالص است و ماده فعال ان اکسيد برم و ماده پايه ان اکسيد الومينم است.
    بعد از فعال شدن اين پمپ انرژی کريستال يا قوت نور باران می شودو بعضی از اتمها رادر اثرجذب القايی-stimulated absorption برانگيخته کرده وبه ترازهای بالاتر می برد.



    پديده جذب القايی: اتم برانگيخته = اتم+فوتون

    با ادامه تشعشع پمپ تعداد اتمهای برانگيخته بيشتر از اتمهای با انرژی کم ميشود به اصطلاح وارونی جمعيت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتمهای برانگيخته توان نگهداری انرژی زيادتر را نداشته وبه تراز با انرژی کم بر ميگردند وانرژی اضافی را به صورت فوتون ازاد می کنند که به اين فرايند گسيل خودبخودی گفته می شود ولی از انجايی که پمپ اپتيکی
    مرتب به اتمها فوتون می تاباند پديده ديگري زودتر اتفاق می افتد که به ان گسيل القايی-stimulated emission گفته می شود .وقتی يک فوتون به اتم برانگيخته بتابد ان را تحريک کرده و زودتر به حالت پايه خود بر می گرداند.

    گسيل القايی: اتم+دو فوتون = اتم برانگيخته+ فوتون

    اين فوتونها دوباره بعضی از اتمها را بر انگيخته ميکنند و واکنش زنجير وار تکرار می شود.
    بخشی از نور ها درون کريستال به حرکت در می ايند که توسط مشددهای اپتيکی درون کريستال برگرداننده می شوند واين نورها در همان راستای نور اوليه هستد بتدرج با افزايش شدت نور لحظه ای می رسد که نور ليزر از جفتگر خروجی با روشنايی زياد بطور مستقيم خارج می شود .



    ليزر CO2
    ليزرهاي گازي نوع خاصي از ليزر است كه در آن گازي داخل يك لوله ي شفاف مثل لامپ مهتابي مي رود. عبور جريان از اين لوله باعث رفت و آمد ِ فوتون مي شود. اولين نوع ِ اين ليزرها هليم نئون بود. يعني همين ليزرهاي خانگي و مدارس. اين ليزر ِ ايمن توسط يك ايراني در مؤسسه ي بل به نام دكتر علي جوان اختراع شد. نوع ديگر ليزر ليزر CO2 است. البته در محفظه ي آن هليوم و مقداري نيتروژن هم هست. كاز نيتروژن انرژي ِ الكترودها را ذخيره مي كند. پس از برخورد مولكولهاي نيتروژن به مولكول CO2 اين انرژي انتقال مي يابد. مولكولهاي CO2 برانگيخته مي شوند. گاز هليوم به انتقال ِ انرژي كمك مي كند. همچنين كمك مي كند تا مولكولهاي دي اكسيد كربن زودتر به ترازهاي انرژي عادي يا حالت عادي خود برگردند. اين ليزرها بازده خوبي دارند.


    نمايي از ليزر گازي دکتر علي جوان (مجله "Smithsonian" آوريل 1971)



    كاربردهاي ليزر :

    تمام نگاري



    تمام نگاري ( هولوگرافي) يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد.
    اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد. فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.

    حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست.

    يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد: الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود. ب) وضعيت نسبي جسم - صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند. ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.
    تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.


    اندازه گيري و بازرسي

    خصوصيات جهتمندي درخشايي و تكفامي ليزر باعث كاربردهاي مفيد زيادي براي اندازه گيري و بازرسي در رشته مهندسي سازه و فرايندهاي صنعتي كنترل ابزار ماشيني شده است. در اين بخش تعيين فاصله بين دو نقطه و بررسي آلودگي را نيز مد نظر قرار مي دهيم

    يكي از معمولترين استفاده هاي صنعتي ليزر هم محور كردن است. براي اينكه يك خط مرجع مستقيم براي هم محور كردن ماشين آلات در ساخت هواپيما و نيز در مهندسي سازه براي ساخت بناها پلها و يا تونلها داشته باشيم استفاده از جهتمندي ليزر سودمند است. در اين زمينه ليزر به خوبي جاي وسايل نوري مانند كليماتور و تلسكوپ را گرفته است. معمولا از يك ليزر هليم - نئون با توان كم استفاده مي شود و هم محور كردن عموما به كمك آشكارسازهاي حالت جامد به شكل ربع دايره اي انجام مي شود. محل برخورد باريكه ليزر روي گيرنده با مقدار جريان نوري روي هر ربع دايره معين مي شود. در نتيجه هم محور شدن بستگي به يك اندازه گيري الكتريكي دارد و در نتيجه نيازي به قضاوت بصري آزمايشگر نيست. در عمل دقت رديف شدن از حدود 5µm تا حدود 25µm به دست آمده است.

    از ليزر براي اندازه گيري مسافت هم استفاده شده است. روش استفاده از ليزر بستگي به بزرگي طول مورد نظر دارد . براي مسافتهاي كوتاه تا 50 متر روشهاي تداخل سنجي به كار گرفته مي شوند كه در آن ها از يك ليزر هليم - نئون پايدار شده فركانسي به عنوان منبع نور استفاده مي شود. براي مسافتهاي متوسط تا حدود 1 كيلومتر روشهاي تله متري شامل مدوله سازي دامنه به كار گرفته مي شود. براي مسافت هاي طولاني تر مي توان زمان در راه بودن تپ نوري را كه از ليزر گسيل شده است و از جسمي بازتابيده مي شود اندازه گيري كرد.

    در اندازه گيري تداخل سنجي مسافت از تداخل سنج مايكلسون استفاده مي شود. باريكه ليزر به وسيله يك تقسيم كننده نور به يك باريكه اندازه گيري و يك باريكه مرجع تقسيم مي شود باريكه مرجع با يك آينه ثابت بازتابيده مي شود در حالي كه باريكه اندازه گيري از آينه اي كه به جسم مورد اندازه گيري متصل شده است بازتاب پيدا مي كند. سپس دو باريكه بازتابيده مجددا با يكديگر تركيب مي شوند به طوري كه با هم تداخل مي كنند و دامنه تركيبي آن ها با يك آشكار ساز اندازه گيري مي شود. هنگامي كه محل جسم در جهت باريكه به اندازه نصف طول موج ليزر تغيير كند سيگنال تداخل از يك ماكزيموم به يك مينيموم مي رسد و سپس دوباره ماكزيموم مي شود. بنابراين يك سيستم الكترونيكي شمارش فريزها مي تواند اطلاعات مربوط به جابجايي جسم را به دست دهد. اين روش اندازه گيري معمولا در كارگاههاي ماشين تراش دقيق مورد استفاده قرار مي گيرد و امكان اندازه گيري طول با دقت يك در ميليون را مي دهد. بايد يادآوري كرد كه در اين روش فقط مي توان فاصله را نسبت به يك مبدا اندازه گيري كرد. برتري اين روش در سرعت دقت و انطباق با سيستم هاي كنترل خودكار است.

    براي فاصله هاي بزرگتر از روش تله متري مدوله سازي دامنه استفاده مي شود و فاصله روي اختلاف فاز بين دو باريكه ليزر مدوله مي شود و فاصله از روي اختلاف فار بين دو باريكه گسيل شده و بازتابيده معين مي شود. باز هم دقت يك در ميليون است. از اين روش در مساحي زمين و نقشه كشي استفاده مي شود. براي فواصل طولاني تر از 1 كيلومتر فاصله با اندازه گيري زمان پرواز يك تپ كوتاه ليزري گسيل شده از ليزر ياقوت و يا ليزر CO2 انجام مي گيرد. اين كاربردها اغلب اهميت نظامي دارند و در بخشي جداگانه بحث خواهد شد كاربردهاي غير نظامي مانند اندازه گيري فاصله بين ماه و زمين با دقتي حدود 20 سانتي متر و تعيين برد ماهواره ها هم قابل ذكر است.

    درجه بالاي تكفامي ليزر امكان استفاده از آن را براي اندازه گيري سرعت مايعات و جامدات به روش سرعت سنجي دوپلري فراهم مي سازد. در مورد مايعات مي توان باريكه ليزر را به مايع تابانده و سپس نور پراكنده شده از آن را بررسي كرد. چون مايع روان است فركانس نور پراكنده شده به خاطر اثر دوپلر كمي با فركانس نور فرودي تفاوت دارد. اين تغيير فركانس متناسب با سرعت مايع است. بنابراين با مشاهده سيگنال زنش بين دو پرتو نور پراكنده شده و نور فرودي در يك آشكار ساز مي توان سرعت مايع را اندازه گيري بدون تماس انجام مي شود. و نيز به خاطر تكفامي بالاي نور ليزر براي برد وسيعي از سرعتها خيلي دقيق است.

    يكي از سرعت سنجهاي خاص ليزر اندازه گيري سرعت زاويه اي است. وسيله اي كه براي اين منظور طراحي شده است ژيروسكوپ ليزريناميده مي شود و شامل ليزري است كه كاواك آن به شكل حلقه اي است كه از سه آينه به جاي دو آينه معمول استفاده مي شود. اين ليزر مي تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامين كند. فركانسهاي تشديدي مربوط به هر دو جهت انتشار را مي توان با استفاده از اين شرط كه طول تشديد كننده ( حلقه اي ) برابر مضرب صحيحي از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زماني كه لازم است نور يك دور كامل بزند زاويه آينه هاي تشديد كننده به اندازه يك مقدار خيلي كوچك ولي محدود حركت خواهد كرد. طول موثر براي باريكه اي در همان جهت چرخش تشديد كننده مي چرخد كمي بيشتر از باريكه اي است كه در جهت عكس مي چرخد. در نتيجه فركانس هاي دو باريكه اي كه در خلاف جهت يكديگر مي چرخند كمي تفاوت دارد و اختلاف اين فركانسهاي متناسب با سرعت زاويه اي تشديد كننده است . با ايجاد تپش بين دو باريكه مي توان سرعت زاويه اي را اندازه گيري كرد. ژيروسكوپ ليزري امكان اندازه گيري با دقتي را فراهم مي كند كه قابل مقايسه با دقت پيچيده ترين و گرانترين ژيروسكوپ هاي معمولي است.

    كاربرد مصرفي ديگر و يا به عبارت بهتر كاربرد مصرفي واقعي عبارت از ديسك ويدئويي و ديسك صوتي است. يك ديسك ويدئو حامل يك برنامه ويدئويي ضبط شده است كه مي توان آن را بر روي دستگاه تلويزيون معمولي نمايش داد. سازندگان ديسك ويدئويي اطلاعات را با استفاده از يك سابنده روي آن ضبط مي كنند كه اين اطلاعات به وسيله ليزر خوانده مي شود. يك روش معمول ضبط شامل برشهاي شياري با طول ها و فاصله هاي مختلف است عمق اين شيارها 4/1 طول موج ليزري است كه از آن در فرايند خواندن استفاده مي شود. در موقع خواندن باريكه ليزر طوري كانوني مي شود كه فقط بر روي يك شيار بيفتد. هنگامي كه شيار در مسير لكه باريكه ليزر واقغ شود بازتاب به خاطر تداخل ويرانگر بين نور بازتابيده از ديوارهاي شيار و به آن كاهش پيدا مي كند. به عكس نبودن شيار باعث يك بازتاب قوي مي شود. بدين طريق مي توان اطلاعات تلويزيوني را به صورت رقمي ضبط كرد.

    كاربرد ديگر ليزرها نوشتن و خواندن اطلاعات در حافظه نوري در كامپيوترهاست لطف اي حافظه نوري هم در توان دسترسي به چگالي اطلاعات حدود مرتبه طول موج است. تكنيك ضبط عبارت است از ايجاد سوراخ هاي كوچكي در يك ماده مات يا نوعي تغيير خصوصيت عبور و بازتاب ماده زير لايه كه با استفاده از ليزرهاي با توان كافي حاصل مي شود. و حتي مي تواند فيلم عكاسي باشد. اما هيچ يك از اين زير لايه ها را نمي توان پاك كرد. حلقه هاي قابل پاك كردن بر اساس گرما مغناطيسي فروالكتريك و فوتوكروميك ساخته شده اند. همچنين حافظه هاي نوري با استفاده از تكنيك تمام نگاري نيز طراحي شده اند. نتيجتا اگر چه از لحاظ فني امكان ساخت حافظه هاي نوري به وجود آمده است ولي ارزش اقتصادي آن ها هنوز جاي بحث دارد.

    آخرين كاربردي كه در اين بخش اشاره مي كنيم گرافيك ليزري است. در اين تكنيك ابتدا باريكه ليزر بوسيله يك سيستم مناسب روبشگر بر روي يك صفحه حساس به نور كانوني مي شود و در حالي كه شدت ليزر به طور همزمان با روبش از نظر دامنه مدوله مي شود به طوري كه بتوان آن را بوسيله كامپيوتر توليد كرد.( مانند سيستم هاي چاپ كامپيوتري بدون تماس ) و يا آنها را به صورت سيگنال الكتريكي از يك ايستگاه دور دريافت كرد( مانند پست تصويري). در مورد اخير مي توان سيگنال را به وسيله يك يك سيستم خواننده مناسب با كمك ليزر توليد كرد. وسيله خواندن در ايستگاه دور شامل ليزر با توان كم است كه باريكه كانوني شده آن صفحه اي را كه بايد خوانده شود مي روبد. يك آشكارساز نوري باريكه پراكنده از نواحي تاريك و روشن روي صفحه را كنترل مي كند و آن را به سيگنال الكتريكي تبديل مي كند. سيستم هاي ليزري رونوشت اكنون به طور وسيعي توسط بسياري از ناشران روزنامه ها براي انتقال رونوشت صفحات روزنامه به كار برده مي شود.


    ارتباط نوري

    استفاده از باريكه ليزر براي ارتباط در جو به خاطر دو مزيت مهم اشتياق زيادي برانگيخت :

    الف) اولين علت دسترسي به پهناي نوار نوساني بزرگ ليزر است. زيرا مقدار اطلاعات قابل انتقال روي يك موج حامل متناسب با پهناي نوار آن است. فركانس موج حامل از ناحيه ميكروموج بخ ناحيه نور مرئي به اندازه 104 برابر افزايش مي يابد و در نتيجه امكان استفاده از يك پهناي بزرگتر را به ما مي دهد.

    ب) علت دوم طول موج كوتاه تابش است. چون طول موج ليزر نوعا حدود 104 مرتبه كوچكتر از امواج ميكرو موج است با قطر روزنه يكسان D واگرايي امواج نوري به اندازه 104 مرتبه نسبت به واگرايي امواج ميكرو موج كوچكتر است. بنابراين براي دستيابي به اين واگرايي آنتن يك سيستم اپتيكي مي تواند به مراتب كوچكتر باشد. اما اين دو امتياز مهم با اين واقعيت خنثي مي شوند كه باريكه نوري تحت شرايط ديد ضعيف در جو به شدت تضعيف مي شود. در نتيجه استفاده از ليزرها در ارتباطات فضاي باز ( هدايت نشده ) فقط در مورد اين موارد توسعه يافته اند :

    الف) ارتباطات فضايي بين دو ماهواره و يا بين يك ماهواره و يك ايستگاه زميني كه در يك شرايط جوي مطلوب قرار گرفته است. ليزرهايي كه در اين مورد استفاده مي شوند عبارتند از :

    Nd:YAG ( با آهنگ انتقال 109 بيت در ثانيه ) و يا CO2 با آهنگ انتقال 3*108 بيت در ثانيه ). گرچه CO2 نسبت به Nd: YAG داراي بازدهي بالاتري است و لي داراي اين اشكال است كه نياز به سيستم آشكارسازي پيچيده تري دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.

    ب) ارتباطات بين دو نقطه در يك مسافت كوتاه مثلا انتقال اطلاعات درون يك ساختمان. براي اين منظور از ليزرهاي نيمرسانا استفاده مي شود.

    اما زمينه اصلي مورد توجه در ارتباطات نوري مبتني بر انتقال از طريق تارهاي نوري است. انتقال هدايت شده نور در تارهاي نوري پديده اي است كه از سالها پيش شناخته شده است اما تارهاي نوري اوليه فقط در مسافت هاي خيلي كوتاه مورد استفاده قرار مي گرفتند مثلا كاربرد متعارف آن ها در وسايل پزشكي براي اندوسكوپي است. بنابراين در اواخر سال 1960 تضعيف در بهترين شيشه هاي نوري در حدود 1000 دسي بل بر كيلومتر بود. از آن زمان پيشرفت تكنيكي شيشه و كوارتز باعث تغيير شگفت انگيز در اين عدد شده است به طوري كه اين تضعيف براي كوارتز به 5/0 دسي بل بر كيلومتر رسيده است. اين تضعيف فوق العاده كوچك آينده مهمي را براي كاربرد تارهاي نوري در ارتباطات راه دور نويد مي دهد

    سيستم ارتباطات تارهاي نوري نوعا شامل يك چشمه نور يك جفت كننده نوري مناسب براي تزريق نور به تارها و درانتها يك فوتوديود است كه باز هم به تار متصل شده است. تكرار كننده شامل يك گيرنده و يك گسيلنده جديد است. چشمه نور سيستم اغلب ليزرهاي نيمرساناي نا هم پيوندي دوگانه است. اخيرا طول عمر اين ليزرها تا حدود 106 ساعت رسيده است. گرچه تا كنون اغلب از ليزر گاليم ارسنيد GaAs استفاده شده است ولي روش بهتر استفاده از ليزرهاي نا هم پيوندي است كه در آنها لايه فعال تركيبي از آلياژ چهارگانه به صورت In1-x Gax Asy P1-y است. در اين حالت لبه هاي P ,n پيوندگاه از تركيب دوگانه InP تشكيل شده است و با استفاده از تركيب y=2v2x مي توان ترتيبي داد كه چهار آلياژ چهارگانه شبكه اي كه با InP جور شود با انتخاب صحيح x طول موج تابش را طوري تنظيم كرد كه در اطراف µm 3/1 و يا اطراف 6/1 µm واقع شود كه به ترتيب مربوط به دو مينيموم جذب در تار كوارتز هستند. بسته به قطر d هسته مركزي تار ممكن است از نوع تك مدباشد براي آهنگ انتقال متداول فعلي حدود 50 مگابيت در ثانيه معمولا از تارهاي چند مدي استفاده مي شود. براي آهنگ انتقال هاي بيشتر تارهاي تك مدي مناسبتر به نظر مي رسند. گيرنده معمولا يك فوتوديود بهمني است اگر چه ممكن است از يك ديود PIN و يك ديود تقويت كننده حالت جامد مناسب نيز استفاده كرد.


    ليزر در فيزيك و شيمي

    اختراع ليزر و تكامل آن وابسته به معلومات پايه اي است كه در درجه اول از رشته فيزيك و بعد از شيمي گرفته شده اند. بنابراين طبيعي است كه استفاده از ليزر در فيزيك و شيمي از اولين كاربردهاي ليزر باشند

    رشته ديگري كه در آن ليزر نه تنها امكانات موجود را افزايش داده بلكه مفاهيم كاملا جديدي را عرضه كرده است طيف نمايي است. اكنون با بعضي از ليزرها مي توان پهناي خط نوساني را تا چند ده كيلوهرتز باريك كرد ( هم در ناحيه مرئي و هم در ناحيه فروسرخ ) و با اين كار اندازه گيري هاي مربوط به طيف نمايي با توان تفكيك چند مرتبه بزرگي ( 3 تا 6) بالاتر از روش هاي معمولي طيف نمايي امكان پذير مي شوند. ليزر همچنين باعث ابداع رشته جديد طيف نمايي غير خطي شد كه در آن تفكيك طيف نمايي خيلي بالاتر از حدي است كه معمولا با اثرهاي پهن شدگي دوپلر اعمال مي شود. اين عمل منجر به بررسيهاي دقيقتري از خصوصيات ماده شده است.

    در زمينه شيمي از ليزر هم براي تشخيص و هم براي ايجاد تغييرات شيميايي برگشت ناپذير استفاده شده است. ( فوتو شيمي ليزري) به ويژه در فون تشخيص بايد از روش هاي (پراكندگي تشديدي رامان ) و ( پراكندگي پاد استوكس همدوس رامان ) (CARS) نام ببريم. به وسيله اين روشها مي توان اطلاعات قابل ملاحظه اي درباره خصوصيات مولكولهاي چند اتمي به دست آورد ( يعني فركانس ارتعاشي فعال رامن - ثابتهاي چرخشي و ناهماهنگ بودن فركانس). روش CARS همچنين براي اندازه گيري غلظت و دماي يك نمونه مولكولي در يك ناحيه محدود از فضا به كار مي رود. از اين توانايي براي بررسي جزئيات فرايند احتراق شعله و پلاسما ( تخليه الكتريكي) بهره برداري شده است.

    شايد جالبتري كاربرد شيميايي ( دست كم بالقوه ) ليزر در زيمنه فوتو شيمي باشد. اما بايد در نظر داشته باشيم به خاطر بهاي زياد فوتونهاي ليزري بهره برداري تجاري از فوتوشيمي ليزري تنها هنگامي موجه است كه ارزش محصول نهايي خيلي زياد باشد. يكي از اين موارد جداسازي ايزوتوپها است.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  3. #3
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    ابيراهي چيست؟


    ابيراهي، عبارت است از انحراف پرتوهاي نوري در يك دستگاه اپتيكي. ابيراهي به دو نوع «تك رنگ» و «رنگي» تقسيم مي شود.
    1_ ابيراهي تك رنگ: اين نوع ابيراهي، به طول موج پرتو نوري وابستگي نداشته و به تاري، بوجود آمدن هاله در اطراف تصوير، اعوجاج تصوير و عدم يكنواختي وضوح تصوير در نقاط مختلف، منجر مي شود.
    ابيراهي كروي: اين نوع ابيراهي در اثر كانوني شدن پرتوهاي دور از محور در نقاط نزديكتر به عدسي، و پرتوهاي نزديك به محور در نقاط دورتر از عدسي، بوجود





    مي آيد. دليل اين امر، آن است كه مسير پرتو نوري كه از نقطه S در شكل زير به سطح كروي رسيده و سپس به نقطه P شكست مي يابد، از رابطه زير، برابر با





    كلي دسته اي از پرتوهاي موازي كه با فاصله ثابتي از مركز عدسي بر روي پرده كانوني مي شوند، به صورت يك حلقه كه «دايره كما» نام دارد، بر روي پرده ، نصوير تشكيل مي دهند.




    مجموعه اين «دايره ها» ، يك دنباله V شكل (دنباله دار شكل) را تشكيل مي دهند. در حقيقت، كما ناشي از تفاوت بزرگنمايي هاي مناطق مختلف يك عدسي است.

    آستيگماتيسم:





    براي نقطه روي محور ( وقتي كه عدسي فاقد ساير ابيراهي هاست) جبهه موج خارج شده از عدسي كروي بوده و بنا براين وقتي كه جبهه موج پيش مي رود، در يك تك نقطه همگرا مي شود. ولي وقتي كه شي نقطه اي محوري نيست، جبهه موجي كه خارج مي شود، كروي نيست و در نتيجه جبهه موجي كه همگرا مي شود، در يك نقطه كانوني نمي شود، بلكه روي دو خط كانوني مي شود كه بر يكديگر عمودند و خطوط كانوني «مماسي» (T در شكل) و «پيكاني» (S در شكل ) ناميده مي شوند. شكل تصوير در جايي بين دو خط كانوني مماسي و پيكاني قرار دارد و «دايره با كمترين اغتشاش (عدم وضوح)» ناميده مي شود.

    پيچش ميدان:





    فاصله بين كانونهاي مماسي و پيكاني با دور شدن شيء نقطه‌اي از محور افزايش مي‌يابد. بنابراين، كانون‌هاي مماسي و پيكاني نقاطي كه در فاصله‌هاي مختلف از محور واقع‌اند، مطابق شكل بر دو سطح قرار دارند.

    وقتي دستگاه نوري بدون آستيگماتيسم ناميده مي‌شود كه دو سطح بر هم منطبق باشند. ولي حتي وقتي كه دو سطح بر هم منطبق هستند فوري مي‌توان ديد كه سطح تصوير نتيجه شده انحناء خواهد داشت. اين نقص تصوير «انحناي ميدان» ناميده مي‌شود. به عنوان مثالي از تشكيل تصوير در هنگامي كه آستيگماتيسم وجود دارد، چرخ پرّه داری را مطابق شكل «الف» هم‌محور با محور عدسي در نظر مي‌گيريم. چون تصوير چشمة نقطه‌اي در سطح T خطی عمود بر صفحة نصف‌النهاري است، در سطح T، حاشيه چرخ به طور كامل واضح خواهد بود، در حالي كه پرّه‌ها مانند شكل (ب) واضح نيستند. به همين ترتيب، چون تصوير شيء نقطه‌اي در صفحه S خطي واقع در صفحه نصف‌النهاري است، مطابق شكل (ج) پرّه‌ها واضح‌اند، ولي حاشيه واضح نخواهد بود.





    واپيچش

    آخرين ابيراهيهاي سايدل[1]، واپيچش ناميده مي‌شود و علّت آن يكنواخت نبودن بزرگنمايي دستگاه است. وقتي كه درباره ابيراهي كروي بحث مي‌كرديم، يادآور شديم كه براي شيء نقطه‌اي واقع بر محور دستگاه نوري تصوير فقط داراي ابيراهي كروي است. به همين ترتيب، اگر روزنه‌اي واقع بر محور در هر صفحه‌اي از دستگاه نوري داشته باشيم، تصوير تنها داراي واپيچش خواهد بود(شكل زير). علت



    اين امر از آنجا ناشي مي‌شود كه متناظر با هر نقطه در صفحه تصوير، فقط يكي از پرتوهاي خارج شده از اين نقطه از روزنه مي‌گذرد، در نتيجه، ابيراهيهاي ديگري وجود ندارند. واضح است كه در مورد چنين هيأتي، تصوير هر نقطه يك نقطه خواهد بود، ولي اگر بزرگنمايي دستگاه يكنواخت نباشد، تصوير واپيچيده خواهد بود. اين امر را با در نظر گرفتن طرز تشكيل چهار نقطه هم‌فاصله A، B، C و D كه تصويرهاي آنها به ترتيب ، ، و هستند، مي‌توان توضيح داد. تحليل رياضي نشان مي‌دهد كه:




    عدسي از آن ساخته شده است، بوجود مي آيد. از آنجا كه فاصله كانوني





    عدسي، با تغييرات n تغيير مي كند، طول موجهاي مختلف نور ورودي در مكانهاي مختلفي كانوني مي گردند. اين ابيراهي با هاله اي رنگي كه در اطراف تصوير تشكيل شده، مشخص مي شود. اين ابيراهي با استفاده از يك سيستم دوتايي عدسي (Achromatic doublet)، كه در آن از دو ماده متفاوت با پاشندگي هاي مختلف، كه با هم تشكيل يك عدسي را مي دهند، قابل تخفيف است. اين راهكار، مي تواند ابيراهي را در بازه معيني از طول موج، كاهش دهد؛ اما منجر به حذف كامل آن نخواهد شد.
    استفاده از اين «دوتايي رنگي » نقش مهمي در گسترش و پيشرفت «ميكروسكوپ» داشته اشت.


    ----------------------------------------
    [1] اين مطالب اولين بار در سال 1129/1850 توسط فون سايدل (1896-1820 برابر 1275-1200) به تفصيل مورد بررسي قرار گرفت. از اينرو بارها از آن‌ها به عنوان ابيراهي‌هاي ”سايدل“ سخن رفته است.

    ابيراهي = Aberration




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  4. #4
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    رنگین کمان
    رنگین کمان Rainbow * رنگین کمان جلوه شگفت آوری از طبیعت است که موقع بارش نم نم و یا پس از بارندگی دیده می‌شود. در قدیم مردم خرافی رنگین کمان را نشانی از شور بختی می‌پنداشتند. و خیال می‌کردند، رنگین کمان پلی است برای بالا رفتن ارواح و زمانی که آنرا می‌دیدند گمان می‌کردند شخصی در آستانه مرگ است.ا ین منظره زیبا از شکستن نوری که از میان قطرات باران گذشته است، پدید می‌آید. در اینجا قطرات باران هر کدام نقش منشوری را دارند. که نور خورشید را تجزیه و بازتاب می کند و باعث تفکیک رنگها بصورت مرتب و شکل هندسی زیبایی می‌شوند.می‌دانیم که نور سفید ترکیبی از هفت رنگ است که بوسیله منشور و ... تجزیه می‌شود، همان طوری که در منشور ، نوری که کمترین طول موج را دارد (بنفش) بیشتر منحرف می‌شود، لذا رنگ بنفش با حداکثر انحراف در پایین طیف قرار می گیرد و رنگ قرمز که بیشترین طول موج را دارد، در بالای کمان دیده می‌شود. ترتیب رنگها بصورت زیر است:

    قرمز ، نارنجی ، زرد ، سبز ، آبی ، نیلی ، بنفش.طیف به گونه ای می باشد که نمی توان مرز بین دو ناحیه رنگی را مشخص کرد. در ترتیب رنگی فوق ضریب شکست و زاویه انحراف رفته رفته زیادتر شده و طول موج بتدریج کاهش می‌یابد.
    چه موقع رنگین کمان دیده می‌شود؟
    * اغلب رنگین کمان موقعی دیده می شود که هم باران می‌بارد، و نیز از سوی دیگر خورشید می‌تابد و ما نیز بین این دو قرار گرفته‌ایم. یعنی خورشید باید از پشت سر ما بتابد و باران هم در جلوی روی ما ببارد. در این حالت نور خورشید از پشت سر ما به قطرات باران می‌رسد، این قطرات نور را تجزیه کرده و آنرا به شکل نوارهای رنگین درمی‌آورند (تجزیه نور).

    * برای وقوع این پدیده ، خورشید ، چشم ناظر و وسط قوس رنگین کمان باید هر سه در یک امتداد مستقیم قرار گرفته باشند. پس اگر خورشید در آسمان خیلی بالا باشد، هرگز چنین خط مستقیمی درست نمی‌شود، از اینرو رنگین کمان را تنها در صبح زود و یا موقع عصر می‌توان دید.
    نکته جالب توجه در مورد رنگین کمان این است که یک قطبشگر آن را نامرئی می‌کند. مثلا زمانی که با یک ----- قرمز رنگ نور به رنگین کمان نگاه کنیم، فقط زمینه‌ای قرمز رنگ خواهیم دید. علت این امر این است که فقط نور به رنگ قرمز از پولاروید عبور می‌کند و سایر رنگها جذب آن می‌شوند.
    موضوع جالب توجه دیگر ، این است که اگر دو نفر کنار هم ایستاده باشند، یک رنگین کمان واحد را نخواهند دید. این قوس هفت رنگ ، کمان دایره‌ای می‌باشد، که سایه سر ناظر مرکز آن دایره است. پس بسته به جای هر فرد و فاصله او تا قطرات باران ، کمانهای متفاوتی خواهیم داشت و هر کس رنگین کمان مخصوص خودش را خواهد دید.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  5. #5
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    آینه
    مقدمه
    بدون شک همه ما هر روز با آینه سر و کار داریم و از آن استفاده می‌کنیم. اما آیا تا کنون از خود پرسیده‌ایم که آینه چگونه بوجود آمده است؟! چگونه به تکامل رسیده است؟! و چه نقشی را در زندگی و دنیای پیشرفته امروزی بازی می‌کند؟! احتمال اینکه اولین آینه ، آبگیرها بوده باشند بسیار قوی است و در واقع واژه "آبگینه" یا "آب گونه" شاید از چنین خاستگاهی بوجود آمده باشد.
    تاریخچه
    کاوشهای باستان شناسان مبین این نکته جالب است که آینه‌های شخصی و ساده بیش از 50 قرن قدمت دارند و در دورانهای گذشته از ارزشی اغراق آمیز برخوردار بوده‌اند. زمانی در آسیای صغیر آینه را از جنس برنز و مس مفرغ می‌ساختند و آن را صیقل داده و با دسته‌های پر نقش و نگار عرضه می‌کردند و به تدریج آینه‌های فولادی به علت قابلیت صیقل یافتن بیشتر و شفافیت بیشتر ، نسبت به برنز و مس و مفرغ ، جایگزین آینه‌های قدیمی‌تر شدند، تا اینکه تحول اساسی در صنعت تولید آینه بوجود آمد. در قرن 12 میلادی کاربرد شیشه در تولید آینه کشف شد و اولین آینه‌های شیشه‌ای که با ورقه‌هایی پوشیده از سرب به بازار عرضه می‌شدند بوجود آمدند.

    مدتی بعد ماهیت سمی بودن سرب آشکار گردید و به همین دلیل استفاده از مخلوط جیوه و قلع بجای سرب آغاز شد. این تغییر و تحولات باعث شدند که ونیز که در آن زمان محل تولید اینگونه آینه‌ها بود به یک قطب اقتصادی تبدیل شود. با وجود این ، اختراع و تولید آینه را نباید جزو نیازهای اولیه و تنها در حد یک ابزار شخصی تصور کنیم، امروزه کاربردهای علمی آینه‌ها بسیار بیشتر از کاربردهای اولیه و ظاهری آنها هستند.

    داشنمندان از مدتها قبل خواص آینه‌های تخت و کوژ و کاو (محدب و مقعر) را می‌شناختند و حتی با استفاده از آنها برای متمرکز کردن نور آفتاب وسایلی را برای به آتش کشیدن اجسام اختراع کرده بودند. حتی در این مورد افسانه‌ای وجود دارد که می‌گویند ارشمیدس دانشمند معروف قرن سوم قبل از میلاد بوسیله شبکه‌ای از اینگونه آینه‌ها ، کشتیهای بادبانی مهاجمان رومی را به آتش می‌کشیده است، تا اینکه فرمانروای روم سرانجام در شب موفق به تسخیر شهر "سیراکوز" می‌گردد
    تصویر در آینه‌ها
    آینه‌ها سطوح بازتابنده هستند که تصویر جسم نورانی قرار گرفته در جلوی خودشان را نشان می‌دهند، بسته به فاصله جسم از آینه مشخصات تصویر (مکان - وارونگی - برگردان جانبی - بزرگی) ممکن است متفاوت باشد. این وسیله نوری از دیر باز در زندگی بشر نقش عمده‌ای داشته و استفاده‌های فراوانی از آن به عمل آمده است. در طبیعت شکل گیری تصویر در آب یا در شیشه‌های پنجره و یا سطوح بازتابان فلزی و پدیده‌هایی از این قبیل به وفور وجود دارند. بر حسب نوع کاربرد و چگونگی شکل گیری تصویر و مشخصات آن به دو دسته عمده تقسیم شده‌اند:

    آینه‌های تخت
    آینه‌هایی هستند که در منازل وجود دارد و از جسم نورانی تصویری مستقیم و مجازی و برگردان تشکیل می‌دهند، طوری که سمت راست جسم برای تصویر سمت چپ به حساب می‌آید و برعکس که در اکثر سیستمهای نوری ساده کاربرد فراوان دارند. در کارهای عادی و مصارف عمومی از این آینه استفاده می‌شود. به لحاظ هزینه پایین و تولید راحت و انبوه سازی و سادگی مکانیزم توسعه فراوانی دارد.

    در منازل ، باشگاهها و مغازه‌ها و دکوراسیون در آینه کاری و معماری و در بتینه کاری و تزئینات ساختمان کاربرد فراوان دارند. از قدیم الایام به صورتهای طبیعی یافت می‌شدند، که با پیشرفت علم و صنعت با کیفیتهای بالاتر نیز به بازار عرضه شد که حتی در برخی سیستمهای اپتیکی نیز بکار گرفته‌اند.

    موارد استفاده آینه‌های تخت
    امروزه بهره وری این آینه‌ها را بالا برده‌اند و آینه‌هایی با ضریب بازتابش بسیار بالایی هم ساخته‌اند. در سیستمهای نوری و برخی دستگاههای حساس نوری از جمله لیزرها از این آینه‌ها استفاده می‌شود، آینه‌های شیشه‌ای نیم بازتابان نیز از این نوعند.
    انواع آینه‌های تخت
    آینه‌های شیشه‌ای: که بر حسب نوع کیفیت و صیقل بودن شیشه و مواد اندود کننده دارای کیفیت متفاوتی می‌باشند.
    آینه‌های فلزی: آینه‌های فلزی را بیشتر از نوع تخت می‌سازند و در دندانپزشکی و قطعات ریز اپتیکی کاربرد دارند.
    آینه‌های لایه گذاری شده: آینه‌ای با چند لایه اندود جهت بالا بردن ضریب بازتابش و اصلاح آینه‌ها شیشه‌ای و جلوگیری کامل از شبح نوری ساخته شده‌اند.
    آینه‌های کروی
    این آینه‌ها به دو دسته عمده آینه‌های محدب و آینه‌های مقعر تقسیم می‌شوند. این آینه‌ها از لحاظ همگرایی و واگرایی پرتوهای نوری و شکل گیری تصویر و بزرگنمایی و وارونگی و سایر مشخصات تصویر کاربردهای ویژه‌ای در سیستمهای نوری دارند.
    آینه شلجمی
    در چراغهای اتومبیلها و برخی سیستمهای موازی ساز نورها بکار می‌روند، که شکلی شبیه آینه‌های کروی اما متفاوت از آنها دارند.

    آینه‌های توان بالا
    نوعی آینه‌های چند لایه‌ای هستند که در سیستمهای بازتاب کامل نور و نیز در سیستمهای لیزری و برخی طیف سنجها و محاسبات دقیق و حساس نوری کاربرد دارند.

    تقسیمات آینه‌ها
    آینه‌ها را بر حسب جنس مواد سازنده و نحوه کارشان به چند دسته عمده بصورت زیر نیز تقسیم بندی می‌کنند که اسامی آنها گویای چگونگی ساخت آنها نیز می‌باشد.

    آینه‌های شیشه‌ای
    این آینه‌ها از جنس شیشه بوده که پشت آن به توسط مواد باز تابنده اندود شده است و به لحاظ هزینه پایین و مکانیزم ساده کاربرد وسیعی دارند، معمولا سطوح این آینه‌ها به توسط جیوه (Hg) و نقره (Ag) و آلومینیوم (Al) اندود می‌شود. البته یک لایه رنگ هم روی فلز زده می‌شود که از آن محافظت نماید.

    آینه‌های فلزی
    یک نوع آینه‌های فلزی همان آینه‌ای شیشه‌ای اندود فلزی شده هستند، نوع دوم که بیشتر مد نظر ماست جهت جلوگیری از شبح نوری که از تداخل دو بازتاب لایه خارجی و داخلی آینه ایجاد می‌شود و وضوح تصویر را پایین می‌آورد. آینه‌های تک لایه‌ای فلزی هستند، که فلزات با سطوح صیقل یافته ساخته می‌شود که مشهورترینشان آینه آلومینیومی یا آینه استیل و ... که توان بازتابی خوبی دارند و در دستگاههای اپتیکی هم جواب خوبی می‌دهند.

    آینه‌های مایع
    یک آینه دیگر با سمت گیری بسیار ویژه ، آینه‌ای است که از سطح یک مایع تشکیل می‌یابد. برای مثال ، از یک تشت پر از جیوه و یک باریکه لیزر برای تعیین امتداد قائم یک محل استفاده می‌شود و به منزله یک شاقول اپتیکی دقیق مورد استفاده قرار می‌گیرد. برای همین مقصود ، می‌توان حتی از مایعاتی که قدرت بازتابی کمتری دارند ولی سمی نیستند، استفاده کرد.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  6. #6
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    ابیراهی در عدسی
    در سیستم‌های نوری هر انحرافی از تصویر کامل تحت عنوان ابیراهی مطرح می‌شود که این انحراف برای نور تک‌رنگ شامل ابیراهی کروی ، ابیراهی کما ، انحنای میدان ، اعوجاج و آستیگماتیسم می‌باشد. نور مرکب علاوه بر ابیراهیهای مذکور ابیراهی رنگی نیز خواهد داشت.


    دید کلی
    در سیستم‌های نوری مرکزدار و عدسی‌ها چنین فرض می‌شود که در تمام حالات از طرف جسم دسته باریکی اشعه که شعاع اصلی آن عمود بر سطح عدسی باشد، می‌تابد. همچنین ، جسم کوچک ، عمود بر محور اصلی و نور تابشی تک‌رنگ فرض می‌شود، ولی در عمل شرایط فوق موجود نیست، در نتیجه تصویری که توسط دستگاهی ، از یک جسم حاصل می‌شود، با تصویر نظری یکسان نمی‌باشد، یعنی در نتیجه عدم رعایت تقریب گاوس و بکار نبردن نور تک‌رنگ معایبی در تصویر حاصل می‌شود و هر انحرافی از تصویر کامل تحت عنوان ابیراهی مطرح می‌شود.

    انواع ابیراهی
    ابیراهی رنگی
    هر جا که تغییر ضریب شکست یا رنگ نور به حساب بیاید، ابیراهی رنگی مطرح می‌شود، زیرا ضریب شکست مواد شفاف با رنگ نور تغییر می‌کند. عدسی از جسم ، تنها یک تصویر نمی‌دهد بلکه از آن یک سری تصویر (به ازای هر رنگ موجود در دسته شعاع یک تصویر) تشکیل می‌دهد. مشابهت عدسی با منشور که در لبه‌های آن مشهودتر است، موجب پاشندگی نور می‌گردد. بزرگنمایی جانبی هم به دنبال تغییر فاصله کانونی با رنگ تغییر می‌کند. خود ابیراهی رنگی به دو نوع ابیراهی رنگی محوری یا طولی و ابیراهی جانبی یا عرضی تقسیم می‌شود.

    ابیراهی تکفام
    انحراف هر شعاع از مسیر تعیین شده (ابیراهی آن) بوسیله فرمول گاوس برحسب پنج حاصل‌جمع موسوم به جمع‌های سیدل بیان می‌شود. اگر تصویر حاصل بدون عیب می‌بود، تمام این حاصل‌جمع‌ها صفر می‌شد، اما هیچ دستگاه نوری نمی‌توان ساخت که در آن تمام این شرایط را یکجا داشته باشیم. صفر شدن هر یک از این جمله‌ها متناظر با نبودن ابیراهی معینی است. این ابیراهی‌ها که برای هر رنگ و ضریب شکست خاصی وجود دارد، تحت عنوان ابیراهی نور تکفام مطرح می‌شوند.

    انواع ابیراهی نور تکفام
    ابیراهی کروی
    هرگاه دهانه عدسی‌های کروی بیش از حد مجاز در تقریب گاوس باشد، تصاویر حاصل معایبی از خود نشان می‌دهند که ناشی از یکسان نبودن بزرگنمایی در مرکز و لبه عدسی می‌باشد. این عیب و تغییر شکل تصاویر ، به نام ابیراهی کروی در عدسی خوانده می‌شود که تحت این شرایط میان کانون پرتو پیرامحوری و کانون پرتو کناری سطحی به عنوان سطح کمترین تاری ایجاد می‌شود. خود ابیراهی کروی به دو نوع ابیراهی طولی کروی ، ابیراهی جانبی کروی تقسیم می‌شود.

    ابیراهی کما
    اگر نقطه نورانی خارج از محور اصلی عدسی باشد و یک دسته اشعه با زاویه بزرگ به عدسی فرستاده شود، اشعه خروجی پس از خروج از عدسی در روی صفحه‌ای عمود بر محور فرعی تصویر غیرقرینه‌ای بدست خواهد داد. این تصویر از نظر شکل و توزیع انرژی نامتقارن است، این ابیراهی تصویر را ابیراهی کما می‌نامند. در حقیقت ابیراهی کما همان ابیراهی کروی است که از قرار گرفتن نقطه نورانی در خارج از محور اصلی حاصل می‌شود. خود ابیراهی کما بر دو نوع کما مثبت و کما منفی تقسیم می‌شود.

    ابیراهی آستیگماتیسم
    این عیب تصویر موقعی روی می‌دهد که فاصله نقطه‌ای از جسم ، از محور آینه مقعر تا حدی زیاد باشد و اشعه‌های تابشی چه باهم موازی باشند و چه باهم موازی نباشند، با آینه زاویه φ می‌سازند. در مورد عدسی‌ها هم ابیراهی به همین شکل مطرح است، یعنی عدسی از نقطه دور از محور نمی‌تواند تصویر نقطه‌ای بدهد. در این صورت دچار ابیراهی آستیگماتیسم است و تصویر مبهم حاصل از آن آستیگماتیک نام دارد، زیرا خطوط شعاعی متفاوتی در کانون متفاوتی نسبت به خطوط عمودی متمرکز می‌شوند.

    انحنای میدان
    اگر عیب دستگاه نوری از هر لحاظ اصلاح شده باشد، باز نقایصی در تصویر به علت انحنای میدان ایجاد می‌شود که میدان و تصویر در مرکز واضح است و در کناره‌‌ها به کلی ناواضح است، زیرا اشعه آمده از هر یک از نقاط جسم محدود نیست. بطوری که شعاع‌های ویژه نقاط مختلف جسم از نقاط مختلف عدسی عبور نمی‌کند.

    ابیراهی اعوجاج یا واپیچش نور
    ابیراهی مربوط به اعوجاج یا واپیچش در مورد اجسام مربعی بوجود می‌آید، بطوریکه تصویر یک شی مربعی ، دیگر مربع نباشد، زیرا بزرگنمایی جانبی در تمام جهات یکنواخت نیست، ممکن است اضلاع به درون خمیده باشند که واپیچش بالشی ایجاد کنند، یا اضلاع به بیرون خمیده شوند و تولید واپیچش بشکه‌ای کنند.

    کنترل و بهینه‌سازی ابیراهی‌ها در دستگاه‌های نوری
    ابیراهی در عدسی به نوع شیشه عدسی که نوع محیط عدسی نیز تعبیر می‌شود، ‌توان (فاصله کانونی) تک تک اجزای نوری در صورتیکه توان اجزا مختلف عوض شوند، یکسری از ابیراهی‌ها تصحیح می‌شوند که در رفع کما و آستیگماتیسم عامل مهم است.

    شکل عدسی (میزان خمیدگی عدسی) توان عدسی تغییر کند، شعاع سطوح عوض می‌شود، آنچه بر ابیراهی‌ها اثرگذار است، شکل عدسی ، فاصله بین عدسی‌ها یا اجزای نوری دستگاه که این فاصله بر ارتفاع پرتو و یا توان کل ذستگاه تاثیر دارد. ضخامت عدسی‌ها محل دریچه در مورد ابیراهی آستیگماتیسم ، واپیچش ، انحنای میدان ، رنگی عرضی و کما این عامل اثر گذار است.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




برچسب برای این موضوع

مجوز های ارسال و ویرایش

  • شما نمی توانید موضوع جدید ارسال کنید
  • شما نمی توانید به پست ها پاسخ دهید
  • شما نمی توانید فایل پیوست ضمیمه کنید
  • شما نمی توانید پست های خود را ویرایش کنید
  •