بالا
 تعرفه تبلیغات




 دانلود نمونه سوالات نیمسال دوم 93-94 پیام نور

 دانلود نمونه سوالات آزمونهای مختلف فراگیر پیام نور

نمایش نتایج: از شماره 1 تا 3 از مجموع 3

موضوع: گراف پترسن در نظريه گراف ها

Hybrid View

  1. #1
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    Icon140 گراف پترسن در نظريه گراف ها

    گراف پترسن
    ساختار
    گراف پترسن به شکل پنج ضلعی منتظم
    دارای ۵ تقاطع



    گراف پترسن، گراف مکمل برای گراف خط، K۵ است. همچنین گراف کنزر KG۵٬۲ هم می‌باشد. این بدان معنا است که اگر برای هر کدام از زیرمجموعه‌های دو عضوی یک مجموعهٔ ۵ عضوی یک رأس در نظر بگیریم و بین هر دو رأسی که زیرمجموعه‌های نظیرشان ناسازگار باشند یک یال وصل کنیم، گراف پترسن ساخته می‌شود.
    گراف پترسن ، گرافی
    غیر مسطح است. هر گراف غیر مسطح با گراف کامل K۵ یا گراف دو بخشی کامل K۳٬۳ هم ریخت یا هومئومورف است. حال آن که پترسن با هر دو گراف هم ریخت می‌باشد.


    خواص عمومی

    شکل (2)
    گراف پترسن با عدد تقاطع 2



    شکل (3)
    گراف پترسن با یال‌هایی برابر با واحد




    دقیقا ۱۹ گراف مکعبی متصل با ۱۰ یال وجود دارد. گراف پترسن یکی از همین ۱۹ گراف می‌باشد. این گراف تنها گرافی با ۱۰ یال از این دسته‌است که دارای قطر برابر ۲ و تنها گراف بدون پل با اندیس رنگی ۴ می‌باشد. و نهایتا تنها گراف بدون پل با ۱۰ یال است که همیلتنی نیست.
    متداول ترین و متقارن ترین شکل گراف پترسن که یک پنج ضلعی با یک ستارهٔ پنج رأس درون آن است که هر یک از رأس‌هایش به رأس‌های پنج ضلعی با یک یال وصل می‌شود ، دارای ۵ نقطه تقاطع می‌باشد(شکل(۱)).این روش ترسیم بهترین روش برای کمینه کردن تعداد تقاطع‌ها نیست. روشی دیگر برای کشیدن گراف پترسن با دو نقطهٔ تقاطع وجود دارد.(شکل(۲)) بنابراین
    عدد تقاطع گراف پترسن ۲ است.
    همچنین گراف پترسن می‌تواند به گونه‌ای رسم شود که یال‌ها دارای طول برابر واحد باشند. این نوع ، یک گراف به طول واحد است.(شکل(3))

    دور و مسیر همیلتونی

    شکل (4)
    گراف پترسن به عنوان گراف شبه همیلتونی



    گراف پترسن دارای مسیر همیلتونی است ولی دور همیلتونی ندارد. همچنان که در بالا ذکر شد این گراف کوچکترین گراف مکعبی بدون پل است که دور همیلتونی ندارد. در نتیجه گراف همیلتونی نیست. ولی این گراف ، شبه همیلتونی است، بدان معنی که با وجود این که دور همیلتونی ندارد ولی با حذف کردن هر یال آن تبدیل به گراف همیلتونی می‌شود و ضمنا کوچترین گراف شبه همیلتونی نیز می‌باشد.(شکل(۴)) گراف پترسن یکی از ۵ گراف متصل راس-ترایا است که دور همیلتونی ندارد.
    رنگ آمیزی
    شکل (5)
    گراف پترسن با شماره رنگی 3



    گراف پترسن دارای شماره رنگی ۳ است. این بدان معنا است که راس‌های آن می‌توانند با ۳ رنگ ،اما نه با ۲، رنگ شوند به طوری که هیچ یالی دو راس همرنگ را متصل نکند.(شکل(۵)) همچنین دارای اندیس رنگی ۴ می‌باشد که یعنی برای رنگ کردن یال‌ها به ۴ رنگ نیاز داریم.

    جدول خصوصیات

    در جدول زیر بعضی از خواص این گراف به طور خلاصه آمده‌است:



    منابع


    Petersen Graph -- from Wolfram MathWorld
    The Petersen Graph - Eindhoven University of Technology




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  2. #2
    2khtar آواتار ها
    • 2

    عنوان کاربری
    کاربر باشگاه
    تاریخ عضویت
    May 2012
    محل تحصیل
    IASBS
    شغل , تخصص
    دانشجو
    رشته تحصیلی
    گراف تئوری
    راه های ارتباطی

    پیش فرض

    ممنون میشم در مورد راس و یال ترایا یکم توضیح بدید.

  3. #3
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    نقل قول نوشته اصلی توسط 2khtar نمایش پست ها
    ممنون میشم در مورد راس و یال ترایا یکم توضیح بدید.
    اینم یک توضیح در مورد یال ترایا
    نردبان موبیوس نمونه‌ای از گراف‌های چنبره ای است.(Li(2005 قابلیت جا سازی آنها را در سطوح دستهٔ بالاتر کشف کرد. نردبانهای موبیوس رأس-ترایا(vertex-transitive)(به استثناء (M6))هستند نه یال-ترایا(edge-transitive):هر رأس از دوری که نردبان از آن تشکیل شده است، مربوط به یک 4-دور است، در حالی که هر پله مربوط به دو تا از این دورها است. وقتی (Mn، n ≡ 2 (mod 4دو قسمتی است

    موفق باشید

    روزگار خوش




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




برچسب برای این موضوع

مجوز های ارسال و ویرایش

  • شما نمی توانید موضوع جدید ارسال کنید
  • شما نمی توانید به پست ها پاسخ دهید
  • شما نمی توانید فایل پیوست ضمیمه کنید
  • شما نمی توانید پست های خود را ویرایش کنید
  •