PDA

توجه ! این یک نسخه آرشیو شده می باشد و در این حالت شما عکسی را مشاهده نمی کنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : كاربردمعادلات ديفرانسيل در اقتصاد Differential Equations



donya88
02-02-2010, 06:11 PM
معادلات دیفرانسیل از دو واژه Differential و Equation ترکیب شده است. Differential در لغت به‌معنی متفاوت و ناهمسان و Equation در لغت به‌معنای برابرسازی، مساوی‌سازی و برابرپنداری بوده و Differential Equation نیز به‌معنای هم چندی وابردی معادله به‌کار رفته است.
دیفرانسیل در اصطلاح،تابع y و متغیر مستقل x را در نظر می‌گیریم. ممکن است این تابع، به‌صورت صریح y=f(x)و یا ضمنی f(x,y)=0 باشد؛ هر رابطه بین مشتقات تابع y را یک معادله دیفرانسیل گویند.
معادله دیفرانسیل در حالت کلی به دو صورت زیر نمایش داده می شود:
http://pnu-club.com/imported/2010/02/113.jpgدر قرون اخیر آنالیز، مهمترین شاخه ریاضیات به‌حساب می‌آید و معادلات دیفرانسیل بخش اساسی آن است.
معادلات دیفرانسیل، به‌عنوان ابزاری قوی در حل بسیاری از مسائل رشته‌های گوناگون دانش بشری مانند: فیزیک، شیمی، مکانیک، اقتصاد و ... به‌کار می‌رود. در حل و بررسی معادلات دیفرانسیل از مفاهیم حساب دیفرانسیل و انتگرال استفاده می‌شود.
برای حل معادلات دیفرانسیل از روش‌های مختلفی استفاده می‌شود از جمله: معادله دیفرانسل جدا (تفکیک‌پذیر)، معادله دیفرانسیل همگن، معادله دیفرانسیل ژاکوبی، معادله دیفرانسیل کامل، فاکتور انتگرال، معادله دیفرانسیل خطی مرتبه اول، معادله دیفرانسیل برنولی، معادله دیفرانسیل لاگرانژ، معادله دیفرانسیل کلرو.

کاربردهای معادلات دیفرانسیل در اقتصاد
معادلات دیفرانسیل در بسیاری از توابع اقتصادی کاربرد دارند. این معادلات در تعیین شرایط پایداری پویا برای تعادل بازار در مدل‌های اقتصاد خرد و نیز ردیابی مسیر زمانی تحت شرایط مختلف در اقتصاد کلان مورد استفاده قرار می‌گیرند. اگر نرخ رشد یک تابع مفروض باشد، اقتصاددانان قادرند، با استفاده از معادلات دیفرانسیل تابع مورد نظر را تعیین کنند. همچنین اگر کشش نقطه‌ای در دست باشد، می‌توان تابع تقاضا را برآورد کرد؛ معادلات دیفرانسیل، جهت برآورد توابع سرمایه از توابع سرمایه‌گذاری و همچنین برآورد توابع هزینه کل و درآمد کل از توابع هزینه نهایی و درآمد نهایی مورد استفاده قرار می‌گیرد.
در این مدخل به شش کاربرد متمایز از معادلات در بخش‌های مختلف اقتصاد پرداخته‌ایم؛ گرچه ممکن است از یک راه حل در برخی کاربردها استفاده شده باشد. هدف از آوردن کاربردهای مختلف بیان اهمیت دیفرانسیل و گستره استفاده از آن در اقتصاد بوده است.
http://pnu-club.com/imported/2010/02/114.jpg
http://pnu-club.com/imported/2010/02/115.jpg
معادله فوق، به‌صورت یکی از معادلات خطی در آمده‌ است؛ لذا بر اساس روش حل معادله مورد نظر در ریاضی به حل آن می‌پردازیم. این معادله به روش معادله دیفرانسیل خطی مرتبه اول حل می‌گردد؛ که روش آن بدین صورت است:
http://pnu-club.com/imported/2010/02/116.jpg
صورت کلی معادله خطی مرتبه اول بدین صورت است:

http://pnu-club.com/imported/2010/02/117.jpg
اگر t=0 باشد، معادله به‌صورت زیر درمی‌آید:

http://pnu-club.com/imported/2010/02/118.jpg
چون m مقداری ثابت و بزرگتر از صفر است، وقتی t به‌سمت بی‌نهایت میل می‌کند، تنها در صورتی‌که h-b>0 باشد، اولین جمله سمت راست، به‌سمت صفر میل می‌کند؛ بنابراین p(t) به‌سمت pَ میل می‌کند. برای حالت‌های عادی که تقاضا دارای شیب منفی b<0 و عرضه دارای شیب مثبت h>0 است، شرایط پایداری پویا قابل حصول است. بازارهایی که در آن شیب توابع تقاضا مثبت یا شیب توابع عرضه منفی باشند، مادامی که h>0 است نیز به‌‌طور پویا پایدارند.
مثلا؛ با فرض اینکه تقاضا برابر D=80-4 و عرضه برابر با S=-10+2p باشند، نقطه تعادل را مشخص کنید و با فرض p0=18 و q0=8 تحقیق کنید که آیا تعادل پایدار است یا نه؟
http://pnu-club.com/imported/2010/02/119.jpg
چون تقاضا دارای شیب منفی b<0 یعنی b=-4 و عرضه دارای شیب مثبت h>0 یعنی h=2 است، شرایط پایداری پویا قابل حصول است.

کاربرد دوم؛ تابع تقاضای Q=f(p) را در صورتی‌که کشش نقطه‌ای (e) برای همه p>0 برابر -k باشد؛ به‌دست آورید.
حل: می‌دانیم، کشش نقطه‌ای تقاضا برابر است با:
http://pnu-club.com/imported/2010/02/120.jpg
معادله فوق نیز به‌صورت یکی از معادلات خطی درآمده است؛ لذا براساس روش حل معادله مورد نظر در ریاضی به حل آن می‌پردازیم. این معادله دیفرانسیل، یک معادله دیفرانسیل جداست؛ با تفکیک متغیرها، آن‌را به‌صورت زیر می‌نویسیم:
http://pnu-club.com/imported/2010/02/121.jpg
مثال عددی: تابع تقاضای Q=f(p) را در صورتی‌که کشش نقطه‌ای تقاضا باشد و از نقطه p=2 و q=4 بگذرد.


http://pnu-club.com/imported/2010/02/122.jpg
شکل تابع یک هذلولی متساوی‌الساقین است. (نقطه چین در شکل به‌معنی منطقه غیر اقتصادی است).
http://pnu-club.com/imported/2010/02/123.jpg
کاربرد سوم؛ فرمولی برای محاسبه کل ارزش p مبلغ وجه اولیه p(0) که به مدت t سال با نرخ بهره مرکب پیوسته i به مرابحه گذاشته شده است به این صورت به‌دست مي ايد :
http://pnu-club.com/imported/2010/02/124.jpg
اگر i برابر بهره مرکب پیوسته باشد،
http://pnu-club.com/imported/2010/02/125.jpg
کاربرد چهارم؛ شرایط پایداری یک مدل تعیین درآمد دو بخشی، که در آن Ŷ، Î و Ĉ، به‌ترتیب انحراف مصرف، سرمایه‌گذاری و درآمد از مقادیر تعادلی Ye، Ieو Ce است را به‌دست می‌آوریم؛ یعنی =C(t)-CeĈ که در آن Ĉ (سی‌هت)، درآمد با نرخ متناسب با مازاد تقاضا C+I+Y تغییر می‌کند:
http://pnu-club.com/imported/2010/02/126.jpg
و نیز 0<a,b,g<1 و (t)=bŶÎ و (t)=gŶĈ
http://pnu-club.com/imported/2010/02/127.jpg
با تفکیک متغیرها و انتگرال‌گیری داریم:
http://pnu-club.com/imported/2010/02/128.jpghttp://pnu-club.com/imported/2010/02/129.jpg
چون =Y(t)-YeŶ یعنی ŶY(t)=Ye+ بنابراین داریم:
Y(t)=Ye+[Y(0)-Ye]ea(g+b-1)t
وقتی t به‌سمت بی‌نهایت میل کند، تنها وقتی که g+b<1 باشد، Y(t) به‌سمت Ye حرکت می‌کند؛ به‌عبارتی مجموع میل نهایی به مصرف g و میل نهایی به سرمایه b، باید کمتر از یک باشد.

کاربرد پنجم (الگوی دومار)؛ تغییر در نرخ سرمایه‌گذاری، بر تقاضای کل و ظرفیت تولیدی یک اقتصاد تأثیر می‌گذارد. مدل دومار در جستجوی یافتن مسیری زمانی است؛ که در طول آن، یک اقتصاد، در حالی‌که به بهره‌برداری کامل از ظرفیت تولیدی خود ادامه دهد، بتواند رشد نماید. دومار می‌گوید: سرمایه‌گذاری ظرفیت تولید را افزایش می‌دهد و برای اینکه از ظرفیت، به‌طور کامل بهره‌برداری شود، افزایش (بالقوه) در تولید، سبب افزایش ظرفیّت تولیدی باید کاملا در افزایش تقاضای کل جذب شود. تابع سرمایه‌گذاری برای رسیدن به رشد مطلوب را در صورتی‌که میل نهایی به پس‌انداز و نسبت نهایی سرمایه به محصول ثابت باشند؛ به‌دست می‌آوریم: s(t)=ay(t)

s(t)=I(t)
y(0)=y0
a>0,b>0
در این الگو، s پس‌انداز، I سرمایه‌گذاری و y درآمد، متغیرهایی درون‌زا و تابعی از زمان هستند و a و b برون‌زا هستند و y0 شرط اولیه است.
http://pnu-club.com/imported/2010/02/130.jpg
با تفکیک متغیرها و انتگرال‌گیری داریم:
http://pnu-club.com/imported/2010/02/131.jpg
http://pnu-club.com/imported/2010/02/132.jpg
مشاهده می‌شود که سرمایه‌گذاری در هر زمان همواره بایداز نرخ (a/b)رشدی معادل درصد برخوردار باشد.

کاربرد ششم (الگوی رشد سولو)؛ «سولو نشان‌دهنده آثاری است که پس‌انداز، رشد جمعیت و پیشرفت تکنولوژی در طول زمان روند تولید دارند.» مسیرهای رشد تعادل را در زمانی‌که از سرمایه و نیروی کار به‌طور کامل استفاده می‌کند، بررسی می‌کند؛ که دارای فروض زیر است:
«اولا؛ فرض می‌کنیم تابع تولید y=f(K,L) تابعی همگن خطی باشد؛ پس نسبت بازده نسبت به مقیاس ثابت است. K سرمایه و L نیروی کار است. ثانیا؛ فرض می‌کنیم که به‌اندازه نسبت ثابت s از مقدار تولید، پس‌انداز و سرمایه‌گذاری می‌شود و داریم:
http://pnu-club.com/imported/2010/02/133.jpg
ثالثا؛ فرض می کنیم نیروی کار با نرخ ثابت r رشد می‌کند: L=L0ert اگر در تابع تولید مقدار بگذاریم، داریم:
http://pnu-club.com/imported/2010/02/134.jpg
معادله فوق مسیر زمانی تشکیل سرمایه، dK/dt را توضیح می‌دهد؛ اگر فرض کنیم z=K/L پس داریم:
http://pnu-club.com/imported/2010/02/135.jpg
از طرفین نسبت به t مشتق می گیریم:
http://pnu-club.com/imported/2010/02/136.jpg
از تساوی رابطه (1) و (2) داریم:
http://pnu-club.com/imported/2010/02/137.jpg
تابع f در رابطه فوق، یک تابع همگن خطی است. با توجه به این‌که تابع f(K,L) را می‌توان بدین صورت نوشت:
http://pnu-club.com/imported/2010/02/138.jpg
پس از رابطه فوق در (3)، مقدار می‌گذاریم، داریم:
http://pnu-club.com/imported/2010/02/139.jpg
پس داریم:
http://pnu-club.com/imported/2010/02/140.jpg
از حل این معادله دیفرانسیل، مسیر زمانی z=K/Lبرحسب r و s که برابر نرخ پس‌انداز است به‌دست می‌آید.»