PDA

توجه ! این یک نسخه آرشیو شده می باشد و در این حالت شما عکسی را مشاهده نمی کنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : فیزیک - ابررسانا - تاریخچه و کاربرد



Borna66
03-16-2009, 02:27 AM
ابررسانایی چیست؟
در سال 1908 هايك كمرلينگ اونز هلندي در دانشگاه ليدن موفق به توليد هليوم مايع گرديد و با استفاده از آن توانست به درجه حرارت حدود يك درجه كلوين برسد. يكي از اولين بررسي‌هايي كه اونز با دسترسي به اين درجه حرارت پايين انجام داد، مطالعه تغييرات مقاومت الكتريكي فلزات بر حسب درجه حرارت بود. چندين سال قبل از آن معلوم شده بود كه مقاومت فلزات وقتي دماي آنها به كمتر از دماي اتاق برسد كاهش پيدا مي‌كند؛ اما معلوم نبود كه اگر درجه حرارت تا حدود كلوين تنزل يابد، مقاومت تا چه حد كاهش مي‌يابد. اونز كه با پلاتينيوم كار مي‌كرد متوجه شد كه سرد شدن نمونه پلاتينيوم با اندكي كاهش در مقاومت الكتريكي آن همراه است كه متناسب با خلوص نمونه متغير بود. در آن زمان خالص‌ترين فلز قابل دسترس جيوه بود و اونز در تلاش براي به دست آوردن رفتار فلز خيلي خالص، مقاومت جيوه خالص را در دماهاي مختلف اندازه گرفت. در سال 1911 وي دريافت كه در درجه حرارت خيلي پايين، مقاومت جيوه تا حد غيرقابل اندازه‌گيري كاهش مي‌يابد كه البته موضوع شگفت‌انگيزي نبود اما نحوه از بين رفتن مقاومت غير منتظره به نظر مي‌رسيد. اونز مشاهده نمود هنگامي كه درجه حرارت جيوه به سمت صفر درجه مطلق تنزل داده مي‌شود، كاهش آرام مقاومت ناگهان در حدود 4 درجه كلوين با افت بسيار بزرگي مواجه شده و پايين‌تر از اين درجه حرارت، جيوه هيچ‌گونه مقاومتي از خود نشان نمي‌داد. همچنين اين گذار ناگهاني به حالت بي‌مقاومتي، فقط مربوط به خواص فلزات نمي‌شد و حتي در جيوه ناخالص نيز اتفاق مي‌افتاد. اونز به اين نتيجه رسيد كه پايين تر از 4 درجه كلوين، جيوه به حالت ديگري از خواص الكتريكي كه كاملا با حالتهاي شناخته شده قبلي متفاوت بود رسيده است. اين حالت تازه «ابررسانايي» نام گرفت.

مدتي بعد مشخص شد كه با تغيير برخي شرايط مانند افزايش دوباره دما، ابررسانايي از بين مي‌رود يعني مقاومت الكتريكي فلزاتي كه به وضعيت ابررسانايي رسيده‌اند، مجددا قابل بازيابي است. همچنين با بررسي خصوصيتهاي مغناطيسي فلزات ابررسانا، مشخص شد كه اگر يك ميدان مغناطيسي قوي به ابررسانا اعمال شود، خواص مغناطيسي فلز ابررسانا نسبت به درجه حرارت‌هاي معمولي بسيار متفاوت مي‌باشد. بر اساس تحقيقات انجام شده، تاكنون مشخص شده است كه نصف عناصر فلزي و همچنين برخي آلياژها و سراميكها در درجه حرارت‌هاي پايين ابررسانا مي‌شوند. مشكل اصلي در استفاده از ابررساناها، ايجاد دماي بسيار پايين آن است. دماي ابررسانايي براي ابررساناهاي اوليه در حدود كمتر از 25 درجه كلوين (248- درجه سانتيگراد) بود و تنها با كمك ئيدروژن يا هليوم مايع مهيا مي‌شد كه بسيار گران قيمت و خطرناك است. بعد از حدود هفت دهه از كشف ابررساناهاي معمولي، سرانجام در سال 1986 مواد سراميكي جديدي از نوع اكسيدهاي مس كشف شدند كه در دماي بالاتر از 77 درجه كلوين كه دماي جوش نيتروژن مايع است، توانايي بروز خاصيت ابررسانايي داشتند و به ابررساناهاي دمابالا (HTS) معروف شدند. تحقيقات صورت گرفته تا سال 2005 منجر به ساخت ابررساناهايي شده است كه در فشار بالا و دماي حدود 165 درجه كلوين (108- درجه سانتيگراد) ابررسانا مي‌شوند.

پژوهش براي بررسي تغيير مقاومت الكتريكي اجسام در دماهاي پائين براي نخستين بار توسط دانشمند اسكاتلندي جيمز دئِور در اواسط قرن نوزدهم آغاز شد. در سال 1864، دو دانشمند لهستاني به نامهاي زيگموند روبلوفسكي و كارل اولزفسكي كه روشي براي براي مايع ساختن اكسيژن و نيتروژن، يافته بودند، به بررسي خواص فيزيكي عناصر و ازجمله مقاومت الكتريكي در دماهاي خيلي كم ادامه دادند و پيش‌بيني نمودند مقاومت الكتريكي در دماهاي كم به شدت كاهش مي‌يابد. روبلوفسكي و اولزفسكي نتايج فعاليت خود را در سال 1880 منتشر ساختند. بعد از آن دِئور و فلمينگ نيز پيش‌بيني ‌خود را مبني بر الكترومغناطيس شدن كامل فلزات خالص در دماي صفر مطلق بيان داشتند. البته دئور بعدها تئوري خود را اصلاح و اعلام داشت مقاومت اينگونه فلزات در دماي مورد اشاره به صفر نمي‌رسد اما مقدار بسيار كمي خواهد بود. والتر نرست نيز با بيان قانون سوم ترموديناميك بيان داشت كه صفر مطلق دست‌نيافتني است. كارل ليند و ويليام همپسون آلماني در همين زمانها روش خنك‌سازي و مايع ساختن گازها با افزايش فشار را به ثبت رساندند.

در سال 1900، نيكلا تسلا كه با سيستم خنك‌سازي ليند كار مي‌كرد، پديده تقويت سيگنالهاي الكتريكي را با سرد شدن اجسام كه درنتيجه كاهش مقاومت آنها بود، مشاهده و به ثبت رساند. سرانجام خاصيت ابررسانايي توسط پروفسور هلندي، كمرلينک اونز، در سال 1911 و زماني‌كه وي سرگرم آزمايش تئوري دئور بود، در دانشگاه ليدن مشاهده شد. اونز دريافت که اگر جيوه در هليم مايع يعني حدود 2/4 درجه كلوين قرار گيرد، مقاومت الکتريکي آن از بين مي‌رود. سپس يك حلقه سربي را در دماي 7 درجه كلوين ابررسانا نمود و قوانين فارادي را بر روي آن آزمايش كرد و مشاهده نمود وقتي با تغيير شار در حلقه جريان القايي توليد شود، حلقه سربي بر عكس رساناهاي ديگر رفتار مي‌نمايد. يعني بعد از قطع ميدان تا زماني‌كه در حالت ابر رسانايي قرار دارد، جريان الكتريكي را تا مدت زيادي حفظ مي‌كند. به عبارت ديگر بعد از به وجود آمدن جريان الكتريكي ناشي از ميدان مغناطيسي در يك سيم ابررسانا، سيم حتي بدون ميدان خارجي يا مولد الكتريكي نيز مي‌تواند حامل جريان باشد. اونز اين رخداد را در آزمايشگاه دانشگاه ليدن با ايجاد جريان ابررسانايي در يک سيم‌پيچ و سپس حمل سيم‌پيچ همراه با سرد کننده‌اي که آن را سرد نگه مي‌داشت به دانشگاه کمبريج به عموم نشان داد. يافته اونز منجر به اعطاي جايزه نوبل فيزيك در سال 1913 به وي شد.

اونز همچنين متوجه شد براي هر يك از مواد ابررسانا، دمايي به نام دماي بحراني وجود دارد كه وقتي ماده از اين دما سردتر شود، جسم ابررسانا مي‌گردد و در دماهاي بالاتر از اين دما، جسم داراي مقاومت الکتريکي است. دماي بحراني عناصر مختلف متفاوت است. مثلا" دماي بحراني جيوه حدود 5 درجه كلوين، سرب 9 درجه كلوين و نيوبيوم 2/9 درجه كلوين مي‌باشد و براي بعضي آلياژها و تركيبات مانند Nb3Sn و Nb3Ge دماي بحراني به 18 و 23 درجه كلوين نيز مي‌رسد. البته فلزات رسانايي مانند طلا، نقره و حتي مس نيز هستند كه تلاش براي رساندن مقاومت ويژه‌شان به صفر بي نتيجه مانده است و مشخص نيست اگر به صفر مطلق برسند مقاومت آنها چقدر خواهد بود. رسانيدن دماي ابررساناهاي متعارف به اين دما نيازمند وجود هليم مايع مي‌باشد كه بسيار پرهزينه، خطرناك و مشکل است. لذا از همان ابتدا تلاش براي توليد ابررساناهايي با دماي بحراني بالاتر شروع شد و محققان در تلاشند مواد ابررسانايي با دماي بحراني بالاتر پيدا كنند.

نوشته شده توسط رضا شریفی در 14:37 | لینک ثابت • یک نظر پنجشنبه هفتم اردیبهشت 1385
مهمترين خواص ابررساناها

درمورد مهمترين خواص ابررساناها مي‌توان به موارد ذيل اشاره داشت.

1. مقاومت ناچيز در مقابل عبور جريان مستقيم و توانايي عبور چگالي جريان بالا: امروزه صرفه‌جويي در مصرف انرژي، يكي از مهم‌ترين نيازهاي كشورهاي صنعتي است. بودجه‌هاي زيادي صرف تحقيقات در زمينه كشف راه‌هاي تازه و موثرتر براي يافتن انرژي‌هاي ارزان‌ و با ريسك كمتر مي‌شود. برپاية اين پديده، بارهاي الكتريكي مي‌توانند بدون تلفات گرمايي از يك رسانا عبور كنند. بنابراين ابررسانايي با نقشي كه مي‌تواند در زمينه صرفه جويي در توليد و انتقال انرژي الكتريكي بازي كند، در آينده بشر نقشي اساسي خواهد داشت و به همين دليل در سالهاي اخير بيش از ده هزار پژوهشگر با صرف هزينه‌هاي زياد، تحقيقات خود را روي موضوع ابررسانايي و كاربردهاي آن در علوم مختلف متمركز ساخته‌اند. با توجه به مقاومت تقريباٌ صفر، ابررساناها درشبکه‌هاي توزيع و انتقال و همچنين ماشينهاي الکتريکي قابل استفاده هستند. اين خاصيت باعث مي‌شود که اگر جرياني در يک ابررسانا ايجاد شود، بدون کاهش قابل توجهي براي مدت طولاني برقرار بماند. همينطور شدت جريان عبوري از ابررسانا نيز به علت فقدان افت اهمي بسيار بالاست. براي مثال آلياژ نيوبيوم و تيتانيوم که در درجه حرارت 4/4 كلوين به حالت ابررسانايي مي‌رسد قادر به عبور جريان 2000 آمپر بر ميليمتر مربع در شدت ميدان 5 تسلا است. اين چگالي صد بار بيشتر از چگالي جريان در سيمهاي مسي معمولي است. البته در صورت افزايش چگالي جريان از حد معيني، ابررسانا در وضعيت مقاومتي قرار مي‌گيرد و خصوصيت ابررسانايي را از دست خواهد داد. جريان يا چگالي جرياني که ابررسانا مي‌تواند از خود عبور دهد و خاصيت ابررسانايي را از دست ندهد به جريان بحراني يا چگالي جريان بحراني معروف است.

2. توانايي در توليد ميدانهاي مغناطيسي قوي: پديدة ابررسانايي در فن‌آوري‌هاي جديد از توانايي‌هاي گسترده‌اي برخوردار است. خواص ابررسانايي در مواد، علاوه بر دماي محيط و شدت جريان عبوري، به ميدان مغناطيسي هم بستگي دارد. يعني حتي اگر جسم در دمايي پايين‌تر از حد ابررسانايي باشد، وقتي ميدان مغناطيسي از ميزان مشخصي بيشتر باشد، خاصيت ابررسانايي از بين خواهد رفت. از اين ميدان‌ها مي‌توان در قطارهاي مغناطيسي استفاده کرد. شدت اين ميدانها براي آلياژ نيوبيوم و تيتانيوم (NbTi) به حدود 10 تسلا نيز مي‌رسد. شدت ميدان مغناطيسي در جهت از بين بردن خاصيت ابررسانايي عمل مي‌کند. ميدان بحراني به شدت ميداني اشاره دارد که ابررسانا خاصيت خود را در آن شدت ميدان از دست مي‌دهد. براي توضيح خصوصيات مغناطيسي ابررسانا، فرض كنيد كه در غياب هر گونه مغناطيسي ابتدا مقاومت ابررسانا با سرد شدن از بين برود و سپس ميدان مغناطيسي به آن اعمال شود. به دليل آنكه چگالي شار نمي‌تواند در داخل فلز تغيير كند، بايد حتي بعد از اعمال ميدان مغناطيسي نيز صفر باقي بماند. در واقع اعمال ميدان مغناطيسي، جريانهاي بدون مقاومتي را القا مي‌كند كه در سطح نمونه طوري گردش مي‌كنند كه چگالي شار مغناطيسي آنها در داخل نمونه دقيقاً برابر و در جهت مخالف چگالي شار ميدان مغناطيسي اعمال شده باشد و از آنجايي كه اين جريانها از بين نمي‌روند، چگالي شار خالص در داخل نمونه صفر باقي مي‌ماند.

سالهاي بسياري تصور مي‌شد كه تمام ابررساناها بر اساس اصول فيزيكي مشابهي رفتار مي‌كنند. اما اكنون ثابت شده ابررساناها با توجه به رفتار فيزيكي، به دو گروه مختلف كه به ابررساناهاي نوع I وII معروفند بايد دسته‌بندي شوند. بيشتر عناصر در شرايط ابررسانايي، رفتار ابررسانايي از نوع I را از خود نشان مي‌دهند اما تعداد كمي از عناصر و بيشتر آلياژها عموماً رفتار ابررسانايي از نوع II را بروز مي‌دهند. در شكل زير ابررساناهاي نوع I و II در جدول مندليف مشاهده مي‌شود.

توجيه اختلاف بين ابررساناهاي نوع Iو II مبتني بر مسافت آزاد ميانگين الکترونهاي هدايتي در فاز نرمال است. مقاومت الکتروني در مواد ابررساناي نوع I يعني آلياژها و فلزات واسط در حالت عادي کوتاه است اما با افزودن مقداري از يک عنصر خاص، مسافت آزاد ميانگين الکترونهاي هدايتي افزايش يافته و ابررساناي نوع اول به ابررساناي نوع دوم تبديل مي‌شود. از نظر مغناطيسي، ابررساناهاي نوع اول داراي دو محدوده و ابررساناهاي نوع دوم داراي سه ناحيه براي فعاليت هستند.

3. خاصيت تونل‌زني: اين مشخصه به اين معني است که اگر دو ابررسانا را خيلي به هم نزديک کنيم، مقداري از جريان يکي به ديگري نشت مي‌کند. در دو سر اين پيوندگاه يا تونل هيچ ولتاژي وجود ندارد. يعني ميزان جريان نشتي به ولتاژ بستگي ندارد ولي به ميدان مغناطيسي و تابش مغناطيسي حتي در مقادير خيلي کوچک بشدت وابسته است.

از كشف ابررسانايي در سال 1911 تاكنون، هيچ نظريه فيزيكي جامعي نتوانسته است به بيان دقيق علت خاصيت ابررسانايي بپردازد. در سال 1957 سه فيزيكدان آمريكايي به نام‌هاي باردين، كوپر و شريفر در دانشگاه ايلي‌نويز نظريه‌اي براي توجيه پديده ابررسانايي در ابررساناهاي متعارف ارائه دادند كه با نام آنها به نظريه BCS معروف گرديد. براساس اين نظريه در ابررساناهاي معمولي، الكترونهايي كه در رسانايي جريان نقش دارند، جفت‌هايي تشكيل مي‌دهند و متقابلاً با عواملي كه باعث مقاومت الكتريكي مي‌شوند، مقابله مي‌كنند. ابداع تئوري BCS نيز براي سه دانشمند آمريكايي جايزه توبل 1972 را به ارمغان آورد. اين‌كه 4۶ سال طول کشيد تا توجيهي براي پديده ابررسانايي يافت شود، دلايلي داشت. دليل اول اين‌كه جامعة فيزيک تا حدود بيست سال مباني علمي لازم براي ارائه راه حل مسئله را كه تئوري کوانتوم فلزات معمولي بود نداشت. دوم اين‌که تا سال ۱۹۳۴ هيچ آزمايش اساسي در اين زمينه انجام نشد. سوم اينکه وقتي مباني علمي لازم بدست آمد، به زودي مشخص شد انرژي مشخصه وابسته به تشکيل ابررسانايي بسيار کوچک يعني حدود يک مليونيم انرژي الکتريکي مشخصة حالت عادي است. بنابراين نظريه پردازان توجه‌شان را به توسعة يک تفسير رويدادي از جريان ابررسانايي جلب کردند. اين مسير توسط فريتز لاندن رهبري مي‌شد. وي در سال ۱۹۵۳ به نکتة زير اشاره کرد:‌ "ابررسانايي پديده‌اي کوانتومي در مقياس ماکروسکوپي است و با جداسازي حالت حداقل انرژي از حالات تحريک شده بوسيلة وقفه هاي زماني رخ مي‌دهد." به علاوه وي بيان داشت كه ديامغناطيس شدن ابررساناها يک مشخصه بنيادي است. تئوري BCS در توضيح و تفسير رويدادهاي ابررسانايي موجود و هم چنين در پيشگويي رويدادهاي جديد نسبتاً موفق بود. در ژوئيه 1959، در اولين کنفرانس بزرگي كه بعد از ارائه ي نظريه ي BCS با موضوع با ابررسانايي در دانشگاه کمبريج برگزار شد، ديويد شوئنبرگ كنفرانس را با اين جمله آغاز کرد: «حالا بايد ببينيم تا چه حد مشاهدات با حقايق نظري جور در مي‌آيند ...؟»

کمي بعد از انتشار نتايج اولية تئوري BCS ، در تابستان سال 1957 سه دانشمند دانماركي به نامهاي آگ بور، بن موتلسون و ديويد پاينز، در کپنهاگ نشان دادند که نوترونها و پروتونهاي موجود در هسته اتم به خاطر جذب دوسويه شان جفت مي‌شوند و بدينوسيله توانستند معماي قديمي پديدة هسته‌اي را توجيه نمايند. در همين زمان يوشيرو نامبو نيز در شيکاگو دريافت که ترتيب جفت شدن BCS براي پديده‌هاي انرژي بالا در فيزيک ذرات ابتدائي نيز صحت دارد. بايد گفت در اثر ارائه تئوري BCS بود كه پژوهشگران فلزات ابررساني جديدي را معرفي کردند و مشتاقانه به دنبال موادي گشتند که در دماهاي نسبتاً بالاتر از 20 کلوين ابررسانا مي‌شوند. بعد از ارائه تئوري BCS، دو آلياژ جديد نيز معرفي شدند. يكي مواد الکترون سنگين مانند CeCu2Si2، UPt3 و UBe13 که به عنوان ابررساناهايي در دماهاي حدود يک کلوين توسط فرانك استگليش در آلمان و زاچاري فيسك، جيم اسميت و هانس اوت در آمريكا شناخته شدند و ديگري فلزات آلي تقريبا دو بعدي با دماي بحراني حدود ده درجه کلوين كه در پاريس توسط دانيل ژرومه کشف شد. با وجود تلاش‌هاي زياد بند ماتيوس که حدود صد ماده ابررسانا را کشف کرد، هنوز حد بالايي براي دماي مواد ابررسانا وجود داشت. دمايي که از مکانيسم به کار رفته براي ابررسانايي يعني تعامل فونون القائي ناشي مي‌شد. چنانكه نور كوانتومي را فوتون مي‌نامند، اصوات كوانتومي را نيز فونون ناميده‌اند.

در سال 1962 جوزفسون انگليسي در 22 سالگي آزمايشاتي روي جفت الكترونهاي كوپر انجام داد كه منجر به مشاهده و اعلام پديده‌اي شد كه خاصيت تونل‌زني يا اثر جوزفسون نام گرفت. بر اساس اثر جوزفسون، درصورتيكه دو قطعه ابررسانا توسط يك عايق بسيار نازك (حدود يك نانومتر) به يكديگر متصل شوند، جفت الكترونهاي كوپر مي‌توانند از عايق عبور نمايند. مقدار جريان الكتريكي ايجاد شده به ولتاژ اتصال و ميدان مغناطيسي وابسته است. ارائه تئوري مزبور براي جوزفسون و دو دانشمند ديگر يعني لئو ايزاكي و ايوار گياور كه فعاليتهاي مشابهي در بررسي پديده تونل زني داشتند جايزه نوبل 1973 را به ارمغان آورد.

حدود 70 سال پيشرفتهاي انجام شده براي افزايش دماي بحراني به كندي انجام گرفت. از سال 1911 تا سال 1973 يعني حدود 62 سال دانشمندان تنها توانستند دماي بحراني را از 4 درجه به 3/23 درجه كلوين كه كمي بيشتر 3/20 كلوين يعني دماي ئيدروژن مايع است برسانند اما كار با ئيدروژن مايع نيز پرهزينه، مشكل‌آفرين و خطرساز بود و كاربردهاي ابررسانا را محدود مي‌ساخت. در سالهاي بعد علاوه بر فلزات و آلياژهاي فلزي، فعاليتهايي در زمينه تركيبات نيمه‌فلزي توسط برخي دانشمندان آغاز شد اما هنوز ماده‌اي ديگري به جز فلزات و آلياژها يافته نشده بود كه بتواند در دماهاي مورد انتظار ابررسانا باشد. سرانجام در 27 ژانويه سال 1986 جرج بدنورز و آلكس مولر در مؤسسه تحقيقاتي IBM شهر زوريخ سوئيس موفق به كشف پديدة ابررسانايي در سراميكي از نوع اكسيد مس و شامل لانتانوم و باريوم شدند. دماي بحراني نمونه ساخته شده، حدود 35 درجه كلوين بود و آنها نيز به خاطر كشف ابررساناهاي دمابالا (HTS) موفق به دريافت جايزة نوبل در سال 1987 شدند. طي مدت زمان كوتاهي پس از كشف ابررسانايي دما بالا، دسترسي به دماهاي بحراني بالاتر به سرعت توسعه يافت. يک ماه بعد از كشف بدنورز و مولر، تاناكا و همکاران وي در توکيو نتايج آنها را تأييد نمودند و نتايج فعاليت آنها در يکي از نشريات ژاپني به چاپ رسيد. اندكي بعد از كشف اكسيد مس حاوي باريوم و لانتانوم، در نتيجه همکاري پاول چو از دانشگاه هوستون و مانگ كنگ وو از دانشگاه آلاباما، عضو جديدي از خانواده مواد ابررساناهاي دما بالا با جايگزيني ايتريوم Y به جاي لانتانوم كشف شد. اين ماده سراميكي كه دماي بحراني آن به 92 درجه كلوين مي‌رسيد، به YBCO معروف شد. با توجه به نقطه جوش نيتروژن كه 77 درجه كلوين در فشار يك اتمسفر است، براي سرد شدن اين ابررسانا تا دماي بحراني استفاده از نيتروژن مايع هم امكانپذير بود كه بسيار ارزان‌تر و بي‌خطرتر از ئيدروژن و هليم مايع بود. بنابراين فقط در طي يک سال از کشف اصلي، دماي انتقال به حالت ابررسانايي افزايش سه برابر داشت و واضح بود که انقلاب ابررساناها شروع شده است. براي پاسداشت تحول مهمي كه در علم فيزيك واقع شده بود، توسط انجمن فيزيکدانان آمريکايي در بعدازظهر يکي از روزهاي مارس 1987 جشني هم در نيويورک برگزار شد. اين جشن 3000 شرکت کننده داشت و حدود 3000 نفر نيز اين جشن را از طريق تلويزيون مدار بسته در خارج از محل اصلي تماشا کردند. در طول شش سال بعد، چند خانواده ديگر از ابررساناها کشف شدند که شامل تركيبات شامل توليوم (Tl) و جيوه (Hg) بوده و داراي حداکثر دماي بحراني بيشتر از 120 درجه کلوين بودند. بالاترين مقدار تأييد شده دماي بحراني در فشار معمولي يك اتمسفر، 135 درجه كلوين و متعلق به HgBa2Ca2Cu3O8 مي‌باشد. به صورت تجربي معلوم شده است اگر ماده ابررسانا به صورت مكانيكي تحت فشار قرار گيرد، دماي بحراني ابررسانا كمي تغيير مي‌كند. در سال 1993، دماي بحراني 165 درجه كلوين (108- درجه سانتيگراد) نيز در تركيبي از اكسيد مس و جيوه و البته تحت فشارهاي خيلي بالا گزارش شد. همگي ابررساناهاي مورد اشاره يک ويژگي مشترك داشتند. وجود سطوح تراز شامل اتمهاي اكسيژن و مس که با مواد حامل بار براي سطوح تراز از يكديگر جدا مي‌شوند. با توجه به كاربردهاي مختلف ابررساناها، بسياري از تلاشها بر افزايش دماي عملكرد ابررساناها تا دستيابي به دماي اتاق متمركز شده است.

هر چند دماي بحراني تركيبات جديد سراميكي در حد قابل توجهي از دماي بحراني مواد ابررساناي متعارف (فلزات و آلياژها) بزرگتر است، به دليل خصوصيات فيزيكي اين مواد مانند شكنندگي و پايين بودن چگالي و جريان بحراني كاربردهاي اين مواد هنوز در مرحله‌ي تحقيق است. اخيراً سعيد سلطانيان به همراه يك گروه علمي به سرپرستي پروفسور شي زو دو در دانشگاه ولونگونگ استراليا ابررسانايي ساخته‌اند كه بالاترين ركورد را از نظر خواص مكانيكي در ميان ابررسانا دارد. اين ابررسانا به شكل سيم يا نواري از جنس دي بريد منيزيم (MgB2) با پوششي از آهن است و امكان انعطاف براي ساخت تجهيزات مختلف الكتريكي را داراست.

ابررساناهاي جديد عموماً سراميكي و اكسيدهاي فلزي ورقه ورقه هستند که در دماي اتاق مواد نسبتاً بي‌ارزشي محسوب مي‌شوند و البته كاربردهاي متفاوتي نيز دارند. اكسيدهاي فلزي ابررسانا در مقايسه با فلزات شامل کمي حامل بار معمولي هستند و داري خواص انيسوتوروپيک الکتريکي و مغناطيسي مي‌باشند. اين خواص به نحو قابل ملاحظه‌اي حساس به محتواي اكسيژن مي‌باشند. نمونه‌هاي ابررساناي موادي مانند YBa2Cu3O7 را يک دانش‌آموز دبيرستاني نيز مي‌تواند در يک اجاق ميکروويو توليد کند اما براي تشخيص خواص فيزيکي ذاتي، کريستالهاي يکتايي با درجه خلوص بالا مورد نياز است كه فرآيند ساخت پيچيده‌اي دارند.

بعد از كشف ابررساناها، تا چند سال تصور مي‌شد رفتار مغناطيسي ابررسانا مانند رساناهاي كامل است. اما در سال 1933 مايسنر و اوشنفلد دريافتند اگر ماده مورد آزمايش قبل از ابررسانا شدن در ميدان مغناطيسي باشد، شار از آن عبور مي‌كند ولي وقتي در حضور ميدان به دماي بحراني برسد و ابررسانا گردد ديگر هيچ‌گونه شار مغناطيسي از آن عبور نخواهد كرد و تبديل به يك ديامغناطيس كامل مي‌شود كه شدت ميدان (B) درون آن صفر خواهد بود. آنها توزيع شار در خارج نمونه‌هاي قلع و سرب را كه در ميدان مغناطيسي تا زير دماي گذار سرد شده بودند را اندازه­گيري و مشاهده كردند كه ابررسانا ديامغناطيس كامل گرديد و تمام شار به بيرون رانده شد. اين آزمايش نشان داد كه ماده ابررسانا چيزي بيشتر از ماده رساناي كامل است. براساس ويژگي مهم ابررساناها، فلزات در حالت ابررسانايي هرگز اجازه نمي‌دهند كه چگالي شار مغناطيسي در درون آنها وجود داشته باشد. به عبارت ديگر در داخل ابررسانا هميشه B=0 است. اين پديده به اثر مايسنر معروف شد.

در اثر پديده مايسنر اگر يك آهنربا روي ماده ابررسانا قرار گيرد، روي آن شناور مي‌ماند. در شكل يك آهنرباي استوانه‌اي روي يك قطعه ابررسانا كه توسط نيتروژن خنك شده شناور است. علت شناور ماندن، اثر مايسنر است كه براساس آن خطوط ميدان مغناطيسي امكان عبور از ابررسانا را نيافته و چنانكه مشاهده مي‌شود، ابررسانا قرص مغناطيسي را شناور نگه مي‌دارد.

پس از کشف ديامغناطيس بودن ابررساناها، در سال 1950 آلياژهاي ابررسانايي مانند سرب+بيسموت و سرب+تيتانيوم كشف شدند که ميدانهاي بحراني خيلي بالايي از خود نشان مي‌دادند. پژوهشهاي بعدي نشان داد که اين مواد نوع متفاوتي از ابررساناها هستند که بعداً نوع II ناميده شدند. لاندن با استفاده از موازنه انرژي در محدوده کوچکي بين مرز فازهاي ابررسانا و نرمال، شرط تعادل فاز را به دست آورده و به حضور يک سطح انرژي ديگر با منشأ غيرمغناطيسي اشاره کرد كه علاوه بر انرژي مرز بين دو فاز ابررسانا و نرمال وجود داشت. وي متذکر شد که اگر سطح انرژي کل مثبت باشد ابررسانايي ازنوع اول و اگر منفي باشد از نوع دوم است که در اين صورت ميدان مغناطيسي به درون ابررسانا نفوذ مي‌کند. در سال 2003 نيز آلكسي آبريكوزوف و ويتالي گينزبورگ به خاطر بسط تئوري ابررسانايي همراه با آنتوني لگت برنده جايزه نوبل فيزيك شدند.

به تازگي هم پژوهشگران فرانسوي خاصيت جديدي را در ابررساناها پيدا كرده‌اند كه قبلاً در هيچ نظريه‌اي پيش‌بيني نشده بود. چنانكه اشاره شد خواص ابررسانايي در مواد، به دماي محيط، ميدان مغناطيسي و شدت جريان عبوري بستگي دارد. محققان فرانسوي بلوري ساخته‌ بودند كه در دماي 04/0 درجه كلوين ابررسانا مي‌شد و وقتي شدت ميدان مغناطيسي به بيشتر از 2 تسلا مي‌رسيد، اين خاصيت از بين مي‌رفت. يكي از پژوهشگران اين گروه، از روي كنجكاوي، شدت ميدان مغناطيسي را باز هم بيشتر كرد. وقتي شدت ميدان به 12 تسلا رسيد، بلور دوباره ابررسانا شد. وقتي ميدان باز هم بالاتر رفت، اين خاصيت دوباره از بين رفت. اين گزارش كه اخيراً در نشريه علمي ساينس به چاپ رسيده، توجه بسياري از فيزيكدانان حالت جامد را برانگيخته است چرا كه هيچ توضيح خاصي براي اين پديده وجود ندارد. با توجه به موارد گفته شده، به نظر مي‌رسد كه ميدان مغناطيسي متغير باعث ايجاد رفتارهاي جالب پيش‌بيني نشده در ابررساناها مي‌شود. البته بايد توجه داشت كه ابررسانايي يك خاصيت كاملاً كوانتمي است و به سادگي نمي‌توان وضعيت پيش آمده در اين آزمايش را توصيف كرد.

کاربرد ابررسانا در سیم و کابل
كشف متحول كننده ابررساناهاي دما بالا در سال 1986 منجر به تحول و توليد نوع جديدي از كابلها در سيستمهاي قدرت شد. در ايالات متحده، اروپا و ژاپن رقابت سختي بر روي تجارت توليد آينده كابلهاي ابررسانائي وجود دارد. قابليت هدايت جريان برق در كابلهاي HTS بالغ بر 100 بار بيشتر از هاديهاي آلومينيومي و مسي متداول مي‌باشد. اندازه، وزن و مقاومت اين نوع كابلها از كابلهاي معمولي بهتر بوده و امروزه توليدكنندگان تجهيزات الكتريكي در سراسر دنيا سعي دارند با استفاده از تكنولوژي HTS باعث كاهش هزينه‌ها و افزايش ظرفيت و قابليت اطمينان سيستمهاي قدرت شوند.

کاربرد ابررسانا در ترانسفورماتورها
استفاده از مواد ابررسانا در سيم‌بندي ترانسفورماتورها باعث 50% كاهش در تلفات، وزن و ابعاد ترانسفورماتور نسبت به انواع متداول ترانسفورماتورهاي روغني شده و به علاوه تأثير قابل توجهي نيز در افزايش بازده، كاهش افت ولتاژ و افزايش ظرفيت اضافه بار ترانسفورماتور دارد. استفاده از ترانسفورماتورهاي ابررسانا با توجه به حجم كم و عدم استفاده از روغن براي خنك‌سازي، نقش قابل ملاحظه‌اي در بهبود فضاي شهري و كاهش هزينه‌هاي زيست محيطي خواهد داشت

کاربرد ابررسانا در موتورها و ژنراتورها
درصورت استفاده از سيمهاي ابررسانا به جاي سيمهاي مسي در روتور ماشينهاي القايي، تلفات، حجم، وزن و قيمت آنها كاهش قابل ملاحظه‌اي خواهد داشت و با افزايش بازده، صرفه‌جويي قابل توجهي در انرژي الكتريكي صورت مي‌گيرد. كويل ژنراتورهاي سنكرون نيز با مواد ابررساناي سراميكي قابل ساخت مي‌باشد كه منجر به افزايش قابل توجهي در بازده ژنراتور خواهد شد. به علاوه تكنولوژي ابررسانا امروزه در ساخت كندانسورهاي سنكرون نيز كاربرد دارد. كندانسورهاي ابررسانا داراي بازده بيشتر، هزينه نگهداري كمتر و قابليت انعطاف بهتري هستند

کاربرد ابررسانا در ذخیره سازهای مغناطیسی
در سيستم قدرت بين قدرتهاي الکتريکي توليدي و مصرفي تعادل لحظه‌اي برقرار است و هيچگونه ذخيره انرژي در آن صورت نمي‌گيرد. بنابراين توليد شبکه ناچار به تبعيت از منحني مصرف است كه غير اقتصادي مي‌باشد. ابرساناي ذخيره کننده انرژي مغناطيسي (SMES) وسيله‌اي است كه براي ذخيره کردن انرژي، بهبود پايداري سيستم قدرت و کم کردن نوسانات قابل استفاده مي‌باشد. اين انرژي توسط ميدان مغناطيسي که توسط جريان مستقيم ايجاد مي‌شود ذخيره مي‌شود. ابرساناي ذخيره کننده انرژي مغناطيسي هزاران بار قابليت شارژ و دشارژ دارد بدون اينکه تغييري در خواص مغناطيس آن ايجاد شود. ويژگي ابر رسانايي سيم پيچ نيز موجب مي‌شود که راندمان رفت و برگشت فرايند ذخيره انرژي بسيار بالا و در حدود 95% باشد. اولين نظريه‌ها در مورد اين سيستم در سال 1969 توسط فريه مطرح شد. وي طرح ساخت سيم‌پيچ مارپيچي بزرگي را که توانايي ذخيره انرژي روزانه براي تمامي فرانسه را داشت ارائه كرد که به خاطر هزينه ساخت بسيار زياد آن پيگيري نشد. در سال 1971 تحقيقات در آمريکا در دانشگاه ويسکانسين براي فهميدن بحثهاي بنيادي اثر متقابل بين انرژي ذخيره شده و سيستم‌هاي چند فاز به ساخت اولين دستگاه انجاميد. شركت هيتاچي در سال 1986 يک دستگاه SMES به ظرفيت 5 مگاژول را آزمايش کرد. در سال 1998 نيز ذخيره‌ساز 360 مگاژول توسط شركت ايستك در ژاپن ساخته شد. علاوه بر ذخيره‌سازي انرژي به منظور تراز منحني مصرف و افزايش ضريب بار، سيستم‌هاي مورد اشاره با اهداف ديگري نيز مورد توجه قرار گرفته‌اند. بروز اغتشاشهاي مختلف در شبکه قدرت از جمله تغييرات ناگهاني بار، قطع و وصل خطوط انتقال و ... به عدم تعادل سيستم مي‌انجامد. در اين شرايط انرژي جنبشي محور ژنراتورهاي سنکرون مجبور به تأمين افزايش انرژي ناشي از اختلال هستند و درصورت حفظ پايداري ديناميكي، حلقه‌هاي کنترل سيستم فعال شده و تعادل را برقرار مي‌سازند. اين روند، نوسان متغيرهاي مختلف مانند فرکانس، توان الکتريکي روي خطوط و... را موجب مي‌شود که مشکلات مختلفي را در بهره برداري از سيستم قدرت به دنبال دارد. اما اگر در سيستم مقداري انرژي ذخيره شده باشد، با مبادله سريع آن با شبکه در مواقع مورد نياز مي‌توان مشکلات فوق را کاهش داد. با توجه به اينكه در اين سيستم انرژي از صورت الکتريکي به صورت مغناطيسي و يا بر عکس تبديل مي‌شود، ذخيره‌ساز ابررسانايي داراي پاسخ ديناميکي سريع مي‌باشد و بنابراين مي‌تواند در جهت بهبود عملکرد ديناميکي نيز به کار رود. معمولاً واحدهاي ابررسانايي ذخيره انرژي را در دو مقياس ظرفيت بالا يعني حدود 1800 مگاژول براي تراز منحني مصرف، و ظرفيت پايين (چندين مگا ژول) به منظور افزايش ميرايي نوسانات و بهبود پايداري سيستم مي‌سازند. سيم پيچ ابررسانا از طريق مبدل به سيستم قدرت متصل و شارژ مي‌شود و با کنترل زاويه آتش تريسيتورها ولتاژ DC دو سر سيم پيچ ابررسانا به طور پيوسته در بازة وسيعي از مقادير ولتاژهاي مثبت ومنفي قابل کنترل است. ورودي ذخيره‌ساز انرژي مي‌تواند تغييرات ولتاژ شبکه، تغيير فرکانس شبکه، تغيير سرعت ماشين سنکرون و... باشد و خروجي نيز توان دريافتي خواهد بود. مهم ترين قابليت SMESجداسازي و استقلال توليد از مصرف است که اين امر مزاياي متعددي از قبيل بهره برداري اقتصادي، بهبود عملکرد ديناميکي و کاهش آلودگي را به دنبال دارد. در کابرد AC جريان الکتريکي هنوز تلفات دارد اما اين تلفات مي‌تواند با طراحي مناسب کاهش پيدا کند. براي هر دوحالت کاري AC وDC انرژي زيادي قابل ذخيره‌سازي است. بهترين دماي عملكرد براي دستگاههاي مورد اشاره نيز 50 تا 77 درجه کلوين است.

کاربرد ابررسانا در محدودسازهای جریان خطا
علاوه بر موارد گفته شده، محدودسازهاي ابررسانائي جريان خطا يا SFCL نيز رده تازه‌اي از وسايل حفاظتي سيستم قدرت را ارائه مي‌كنند كه قادرند شبكه را از اضافه جريانهاي خطرناكي كه باعث قطعي پر هزينه برق و خسارت به قطعات حساس سيستم مي‌شوند حفاظت نمايند. اتصال كوتاه يكي از خطاهاي مهم در سيستم قدرت است كه در زمان وقوع، جريان خطا تا بيشتر از 10 برابر جريان نامي افزايش مي‌يابد و با رشد و گسترش شبكه‌هاي برق، به قدرت اتصال كوتاه شبكه نيز افزوده مي‌شود. توليد جريانهاي خطاي بزرگتر، ازدياد گرماي حاصله ناشي از عبور جريان القائي زياد در ژنراتورها، ترانسفورماتورها و ساير تجهيزات و همچنين كاهش قابليت اطمينان شبكه را در پي دارد. لذا عبور چنين جرياني از شبكه احتياج به تجهيزاتي دارد كه توانايي تحمل اين جريان را داشته باشند و جهت قطع اين جريان نيازمند كليدهايي با قدرت قطع بالا هستيم كه هزينه‌هاي سنگيني به سيستم تحميل مي‌كند. اما اگر به روشي بتوان پس از آشكارسازي خطا، جريان را محدود نمود، از نظر فني و اقتصادي صرفه‌جويي قابل توجهي صورت مي‌گيرد. انواع مختلفي از محدود كننده‌هاي خطا تا به حال براي شبكه‌هاي توزيع و انتقال معرفي شده‌اند كه ساده‌ترين آنها فيوزهاي معمولي است كه البته پس از هر بار وقوع اتصال كوتاه بايد تعويض شوند. از آنجاييكه جريان اتصال كوتاه در لحظات اوليه به خصوص در پريود اول موج جريان، داراي بيشترين دامنه است و بيشترين اثرات مخرب از همين سيكل‌هاي اوليه ناشي مي‌شود بايد محدودسازهاي جريان خطا بلافاصله بعد از وقوع خطا در مدار قرار گيرند. محدودكننده‌هاي جريان اتصال كوتاه طراحي شده در دهه‌هاي اخير، عناصري سري با تجهيزات شبكه هستند و وظيفه دارند جريان اتصال كوتاه مدار را قبل از رسيدن به مقدار حداكثر خود محدود نمايند به طوري كه توسط كليدهاي قدرت موجود قابل قطع باشند. اين تجهيزات در حالت عادي، مقاومت كمي در برابر عبور جريان از خود نشان مي‌دهند ولي پس از وقوع اتصال كوتاه و در لحظات اوليه شروع جريان، مقاومت آنها يكباره بزرگ شده و از بالا رفتن جريان اتصال كوتاه جلوگيري مي‌كنند. اين تجهيزات پس از هر بار عملكرد بايد قابل بازيابي بوده و در حالت ماندگار سيستم، باعث ايجاد اضافه ولتاژ و يا تزريق هارمونيك به سيستم نگردند. محدودسازهاي اوليه با استفاده از كليدهاي مكانيكي امپدانسي را در زمان خطا در مسير جريان قرار مي‌دادند. با ورود ادوات الكترونيك قدرت كليدهاي تريستوري براي اين موضوع مورد استفاده قرار گرفتند و مدارهاي متعددي از جمله مدارهاي امپدانس تشديد و ابررسانا، ارائه گرديده است. محدودكننده‌هاي ابررسانا در شرايط بهره‌برداري عادي سيستم يك سيم‌پيچ با خاصيت ابررسانايي بوده (مقاومت و افت ولتاژ كمي را باعث مي‌شود) ولي به محض وقوع اتصال كوتاه و افزايش جريان از يك حد معيني (جريان بحراني) سيم‌پيچ مربوط مقاومت بالايي از خود نشان مي‌دهد و به همين دليل جريان خطا كاهش مي‌يابد. عمل فوق در زمان كوتاهي انجام مي‌پذيرد و نياز به سيستم كشف خطا نمي‌باشد. برآورد اوليه بخش ابر رسانائي EPRI نشان مي‌دهد كه استفاده از محدودسازهاي ابررسانائي جريان يك بازار فروش با درآمد حدود 3 تا 7 ميليارد دلار در 15 سال آينده به وجود خواهد آورد.

ابررساناها و ژنراتورهاي هيدروديناميك مغناطيسی
ژنراتورهاي هيدروديناميك مغناطيسي: اصول کلی ژنراتورهاي هيدروديناميك مغناطيسي (MHD) كه از سال 1959 پژوهشهايي براي توليد برق به وسيله آنها شروع شده و هنوز ادامه دارد، بر اين اساس است که جريان گاز پلاسما (بسيار داغ) يا فلز مذاب از ميان ميدان مغناطيسی قوی عبور داده مي‌شود. با عبور گاز داغ يا فلز مذاب، در اثر ميدان مغناطيسي بسيار قوي موجود، يونهای مثبت و منفی به سمت الکترودهايي که در بالا و پايين جريان گاز پلاسما يا فاز مذاب قرار دارند، جذب مي‌شوند و مانند يك ژنراتور جريان مستقيم، توليد الكتريسيته را باعث مي‌شوند. قدرت الکتريکی اين ژنراتور جريان مستقيم با اينورترهای الکترونيک قدرت، به برق جريان متناوب تبديل و به شبکه متصل مي‌شود. با توجه به هزينه بالاي توليد الكتريسيته در ژنراتورهاي MHD، استفاده از آنها تنها به منظور يكنواختي منحني مصرف در زمانهاي پرباري شبكه مفيد است. سيم‌پيچهاي بزرگ ابررسانا كه از مواد ابررساناي متعارف مانند آلياژ نيوبيوم تيتانيوم ساخته شده‌اند براي توليد ميدانهاي مغناطيسي بسيار قوي مناسب و قابل استفاده است. اگر فاصله دو الكترود 1/0 متر، سرعت يونها 400 متر بر ثانيه و ميدان مغناطيسي 5 تسلا باشد، ولتاژ خروجي 200 ولت خواهد بود و در طول كانال 6 متري و با قطر يك متر، 40 مگاوات انرژي قابل توليد است. مزيت اصلي ژنرتورهاي MHD وزن نسبتاً كم آنها در مقايسه با ژنراتورهاي متعارف است كه استقبال از كاربرد آنها را در صنايع هوايي و دريايي موجب شده است.

سوئيچهاي ابررسانا
با تغيير در شدت ميدان مغناطيسي، امكان تغيير در وضعيت جسم ابررسانا از ابررسانايي به مقاومتي و برعكس امكانپذير است. بنابراين از مواد ابررسانا جهت انجام سوئيچينگ يا كليدزني نيز مي‌توان بهره گرفت. تحقيقات اوليه در اين زمينه از اواخر دهه 1950 ميلادي آغاز شد و كوششهايي براي استفاده از سوئيچهاي ابررسانا در مدارها و حافظه كامپيوترهاي بزرگ صورت گرفت. باك در سال 1956 مداري با نام كرايوترون شامل يك سيم‌پيچ نيوبيوم با دماي بحراني 3/9 درجه كلوين و هسته‌اي از سيم تانتالوم با دماي بحراني 4/4 درجه كلوين معرفي نمود كه با توجه دماي 2/4 درجه كلوين هليوم مايع، امكان تغيير وضعيت سيم تانتالوم در اثر ايجاد جريان الكتريكي و درنتيجه ميدان مغناطيسي در سيم‌پيچ نيبيوم وجود داشت. با توسعه دانش نيمه‌هادي، توجه به سوئيچهاي ابررسانا كاهش يافت اما حجم و تلفات كمتر، و سرعت بالاتر تراشه‌هاي ابررسانا نسبت به تراشه‌هاي نيمه‌هادي، استفاده از سلولهاي كرايوتروني و جايگزيني ابررسانا به جاي مدارهاي مسي را براي ساخت ابركامپيوترهاي بسيار سريع و كم تلفات، حتي با وجود پيشرفتهاي صنعت نيمه‌هادي توجيه‌پذير مي‌سازد. علاوه بر سلولهاي كرايوتروني كه با سرعت 1/0 ميكروثانيه در ساخت حافظه و تراشه‌هاي الكترونيك قابل استفاده است، از اتصالات جوزفسون كه مبناي عملكرد آنها، اثر تونل‌زني است نيز براي ساخت سوئيچهاي بسيار سريع و با سرعت 1/0 نانوثانيه (فركانس 10 گيگاهرتز) استفاده شده اما درمورد تكنولوژي ساخت آنها به تعداد زياد، پژوهشها ادامه دارد.



برگرفنه از :

كد - لینک:
كاربردهاي ابررسانايي در صنعت برق (http://hts.blogfa.com)
:104:
گردآونده:طه-Borna66

MohsenFatemi
08-31-2013, 10:38 PM
تاپیک با موضوع ابررسانایی:
http://pnu-club.com/threads/83762-%D8%A7%D8%A8%D8%B1%D8%B1%D8%B3%D8%A7%D9%86%D8%A7?p =250414#post250414