PDA

توجه ! این یک نسخه آرشیو شده می باشد و در این حالت شما عکسی را مشاهده نمی کنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : ریاضیات - ریاضیات در فضا نانو



Borna66
03-15-2009, 08:23 PM
ریاضیات در فضای نانو علوم نانو و فناوري نانو بيانگر رهگذري به سوي دنيايي جديد هستند. سفر به اعماق سرزمين اتم ها و مولکول ها نويد دهنده اثراث اجتماعي شگفت انگيزي است; در علوم بنيادين، در فناوري هاي نو، در طراحي مهندسي و توليدات، در پزشکي و سلامت و در آموزش. پيش بيني هاي گسترده در حوزه کشفيات جديد، چالش ها، درک مفاهيم، حتي هنوز فرم و محتواي موضوع، مه آلود و اسرارآميز است. در اين مطلب که به نقل از ستاد ويژه توسعه فناوري نانو مي باشد، سعي شده تا چالش هاي دنياي رياضيات در مواجهه با دنياي شگفت انگيز نانو بررسي شود. به عبارت ديگر، رياضيات در معماري پازل نانو چه نقشي خواهد داشت: همگان بر اين نکته توافق دارند که پيشرفت هاي بزرگ، مستلزم تعامل ميان مهندسان، ژنتيست ها، شيميدانان، فيزيکدانان، داروسازان، رياضيدانان و علوم رايانه اي ها است. شکاف ميان علوم و فناوري، ميان آموزش و پژوهش، ميان دانشگاه و صنعت، ميان صنعت و بازار بر مجموعه تاثيرگذار خواهد بود. دلايل کافي مبتني بر فصل مشترک ميان نظام هاي کلاسيک و فرهنگ ها موجود است. اين انقلاب علمي و فناورانه، منحصربفرد است. اين بدين معني است که مي بايستي نه تنها در بعد علمي، که در ساير ابعاد، نيز زيرساخت هاي بنيادين با حداکثر انعطاف پذيري در برابر تغييرات را پيشگويي و پيش بيني کنيم. دانش رياضيات به عنوان خط مقدم جبهه علم مطرح است. ويژگي بديهي رياضيات در علوم نانو «محاسبات علمي» است. محاسبات علمي در فناوريي که به عنوان فناوري انقلابي مطرح شده است. محاسبات علمي در طول، تفسير آزمايشات، تهيه پيش بيني در مقياس اتمي و مولکولي بر پايه تئوري کوانتومي و تئوري هاي اتمي است. همانگونه که رياضيات زبان علم است، محاسبات، ابزاري عمومي علم و کاتاليزوري براي تعاملات عميق تر ميان رياضيات و علوم است. يک تيم محاسبات، درباره مدل شان و اثر محاسبات شان و تطبيق پذيري آن با واقعيت، به بحث مي پردازند. « محاسبات» رابطي ميان آزمايش و تئوري است. يک تئوري و يک مدل رياضي، پيش نياز محاسبات است و يک آزمايش تنها اعتبار بخش هر نوع تئوري، مدل و محاسبات است. مدل هاي رياضي، ستون هاي راهگشا به سوي بنياد علم و تئوري هاي پيش بيني هستند. مدل ها، رابط هايي بنيادين در پروسه هاي علمي هستند و اغلب اوقات در سيستم هاي آموزشي به فاز مدلسازي و محاسبات، تاکيد کافي نمي شود. يک مدل رياضي بر پايه فرمولاسيون معادلات و نامعادلات اصول بنيادين استوار است و مدل درگير با درک کامل پيچيدگي هاي مسئله نظير، جرم، اندازه حرکت و توازن انرژي است. در هر سيستم فيزيکي واقعي تقريب اجازه داده مي شود، تا مدل را در يک قالب قابل حل عرضه کنند. اکنون مي توان مدل را يا به صورت «تحليلي» و يا بصورت «عددي» حل کرد. در اين حالت مدلسازي رياضي يک پروسه پيچيده است،زيرا مي بايستي دقت و کارآيي را همزمان نشان دهد. در علوم نانو و فناوري نانو، مدلسازي نقش محوري را بر عهده دارد، بويژه وقتي که بخواهيم عملکرد ماکروسکوپي مواد را از طريق طراحي در مقياس اتمي و مولکولي کنترل کنيم، آن هم در شرايطي که درجات آزادي زياد باشد. مدلسازي رياضي يک ضرورت در اين فضاي مه آلود است. تفسير داده هاي آزمايشگاهي يک ضروت حتمي است. همچنين براي هدايت، تفسير، بهينه سازي، توجيه رفتارهاي آزمايشگاهي، مدلسازي رياضي ضرورت مي يابد. يک مدل موثر، راه رسيدن به توليدات جديد، درک جديد رفتارشناسي، را کوتاه مي کند و تصحيح گر هوشمندي است که از نتايج گذشته درس مي گيرد. مدلسازي نه تنها ويژگي منحصربفرد رياضيات است بلکه پلي بسوي فرهنگ هاي مختلف علمي است. تئوري در هر مرحله از توسعه علم، نقش محوري دارد، ارزيابي حساسيت مدل به شرايط پروسه هاي فيزيکي و حصول اطمينان از اينکه معادلات و الگوريتم هاي محاسباتي با شرايط کنترل آزمايشگاهي سازگارند، از چالش هاي مهم است. تئوري نهايتا بسوي تعريف نتايج و درک فيزيکي سيستم، ميل خواهد کرد و اغلب اوقات رياضيات جديدي لازم نيست تا به منظور رسيدن به درک رفتار، ساخته شود. عبور از تئوري هاي موجود ارزشمند است و اغلب نيز اتفاق مي افتد. زماني مدل ها، مشابه سيستم هاي شناخته شده هستند که دقت رياضي بالايي را داشته باشند اما در جهان شگفت انگيز نانو، مدل هاي مختلف و جديد، چالش هاي جدي را در دانش رياضيات پديد مي آورند. تئوري هاي جديد در مقياس هاي زماني غيرقابل پيشگوئي اتفاق مي افتند و تئوري هاي قدرتمند در قالب هاي عميق شکل مي گيرند. طراحي در مقياس اتمي و مولکولي، کنترل و بهينه سازي عملکرد مواد و ابزارآلات، و کارآيي شبيه سازي رفتار طبيعي، از مهم ترين چالش ها است. اين چالش ها نويددهنده برهم کنش هاي کامل ميان حوزه هاي مختلف رياضي خواهد بود. همچنين آثار اجتماعي اين چالش ها نيز زياد و متنوع خواهد بود. منافع حاصل از مشغوليت رياضيدانان فعال، توازن با چالش هاي اصلي در زمينه رشد زيرساخت هاي رياضيات و تغييرات در ساختار آموزش رياضيات، از جمله آثار ورود رياضيات به دنياي شگفت انگيز نانو خواهد بود. جامعه رياضي مي بايستي اصلاح شود: «تئوري هاي بنيادين»، «رياضيات ميان رشته اي»، «رياضيات محاسباتي» و «آموزش رياضيات.»
رياضيات چه حوزه هايي را در بر خواهد گرفت؟
الگوريتم هاي اصلي در حوزه هاي رياضيات کاربردي و محاسباتي، علوم کامپيوتر، فيزيک آماري، نقش مرکزي و ميانبرساز را در حوزه نانو برعهده خواهند داشت. براي روشن شدن موضوع برخي از اثرات رياضيات را در فرهنگ نانو بررسي مي کنيم:
روش هاي انتگرال گيري سريع و چند قطبي سريع: اساسي و الزامي به منظور طراحي کدهاي مدار و انتگرال گيري به روش Ewala در کدنويسي در حوزه هاي شيمي کوانتوم و شيمي مولکولي.
روش هاي «تجزيه حوزه»، مورد استفاده در شبيه سازي گسترش فيلم تا رسيدن به وضوح نانوئي لايه هاي پيشرو مولکولي با مکانيک سيالات پيوسته در مقياس هاي ماکروسکوپيک.
تسريع روش هاي شبيه سازي ديناميک مولکولي.
روش هاي بهبود مش بندي تطبيق پذير; کليد روش هاي شبيه پيوسته که ترکيب کننده مقياس هاي ماکروئي، مزوئي، اتمي و مدل هاي مکانيک کوانتوم از طريق يک ابزار محاسباتي است.
روش هاي پيگردي فصل مشترک; نظير روش نشاندن مرحله اي که در کدهاي قلم زني و رسوب گيري جهت طراحي شبه رساناها موثرند و نيز در کدگذاري به منظور رشد هم بافت ها.
روش هاي حداقل کردن انرژي هم بسته با روش هاي بهينه سازي غيرخطي(الماني کليدي براي کد کردن پروتيئن ها)
روش هاي کنترل; موثر در مدلسازي رشد لايه نازک ها.
روش هاي چند شبکه بندي که امروزه در محاسبات ساختار الکتروني و سيالات ماکرومولکولي چند مقياسي بکار گرفته شده است.
روش هاي ساختار الکتروني پيشرفته، به منظور هدايت پژوهش ها به سمت ابرمولکول ها.

فاطمه الله وردي
منبع : سايت «بانك مقالات كانون دانش
برگرفته از :

كد - لینک:
وب سایت علوم پایه دانشجویان دانشگاه پیام نور مشهد (http://pmbs.ir)

:104:
گردآونده:طه-Borna66__________________