بالا
 تعرفه تبلیغات




 دانلود نمونه سوالات نیمسال دوم 93-94 پیام نور

 دانلود نمونه سوالات آزمونهای مختلف فراگیر پیام نور

صفحه 2 از 3 اولیناولین 123 آخرینآخرین
نمایش نتایج: از شماره 11 تا 20 از مجموع 27

موضوع: >> مجموعه مقالات مربوط به فـــيـزيـــــك نـــور <<

  1. #11
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    اصل فرما
    دید کلی
    اصل فرما یکی از قوانین اساسی فیزیک نور است و بساری از قوانین اپتیک از آن قابل استخراج است. قوانین بازتابش و شکست و در واقع شیوه کلی انتشار نور را می‌توان از دیدگاه کاملا متفاوت و شگفت دیگری به نام اصل فرما نگریست. ایده‌هایی که در اینجا مطرح خواهد شد تأثیر بسیار زیادی در گسترش اندیشه فیزیکی و حتی فراسوی نور شناخت کلاسیکی داشته است. این اصل بسیاری از پدیده‌های مشاهده شده در طبیعت را به زیبایی توضیح می‌دهد.
    تاریخچه
    هروی اسکندرانی که در سالهای بین 150 (ق.م) و 250 (م) زندگی می کرد، اولین کسی بود که آنچه را تا کنون اصل و روش نامیده شده است، بنیان گذاشت. او در فرمول بندی خود ادعا کرد که مسیری که نور عملا از نقطه‌ای مانند s به نقطه‌ای مانند p ، از راه بازتابش روی سطح می‌پیماید، کوتاهترین راه ممکن است. بیش از 15 قرن مشاهدات کنجکاوانه "هروی" همچنان بی‌رقیب ماند، تا اینکه در سال 1036 (1657) فرما اصل کمترین زمان مشهور خود را اعلام کرد.

    اصل فرما چیست؟
    پرتو نور در عبور از یک نقطه به نقطه دیگر چنان مسیر را دنبال می‌کند که زمان لازم برای طی آن ، در مقایسه با مسیرهای مجاور ، یا مینیمم باشد و یا ماکزیمم و یا تغییر نکند (یعنی مانا باشد) و یا به عبارت دیگر باریکه نوری یک سطح مشترک را می‌پیماید، راه راست و کوتاهترین راهی است که در کمترین زمان پیموده می‌شود.

    اصل فرما و قوانین بازتابش
    قوانین بازتابش را می‌توان به آسانی از اصل فرما بدست آورد. اگر دو نقطه ثابت A و B را در دو محیط متفاوت در نظر بگیرید که خط APB آنها را به هم وصل می‌کند (فرض می‌کنیم که خط APB در صفحه شکل است). طول کل این خط (l) برابر است با:



    (l2 = (a² + x²) + (b² + (d - x)²



    که x جای نقطه p (یعنی محل برخورد پرتو با آینه) را نشان می‌دهد. بنا بر اصل فرما ، نقطه P باید در جایی قرار بگیرد که مدت سیر نور مینیمم باشد (و یا ماکزیمم باشد و یا تغییر نکند) در هر دو صورت ، این امر مستلزم آن است که dl/dx = 0 باشد. اگر از l نسبت به x مشتق بگیریم بدست می‌آوریم:



    (x (a² + x²) + (d - x) (b² + (d - x)²



    با توجه به شکل ، مشاهده می‌کنیم که می‌شود این معادله را بصورت زیر نوشت:



    Sinө1 = Sinө1



    یا ө1 = ө1 که همان قانون بازتابش است.

    اصل فرما و قوانین شکست نور
    برای اثبات قانون شکست نور از اصل فرما ، دو نقطه A و B را در دو محیط متفاوت در نظر بگیرید، که خط APB آنها را به هم وصل می‌کند. مدت سیر نور از این رابطه بدست می‌آید:



    t = l1/v1 + l2/v2

    با توجه به این که n = c/v ، می‌توان نوشت:



    t = (n1l1 + n2l2)/c = l/c


    راه نوری چیست؟
    به کمیت n1l1 + n2l2 = l طول راه نوری پرتو می‌گویند. طول راه نوری در هر محیط برحسب طول موج در آن محیط برابر با طول همان تعداد طول موج در خلا است. نباید طول راه نوری را با طول راه هندسی که برابر با l1 + l2 است، اشتباه کرد. اصل فرما ایجاب می‌ند که l مینیمم باشد (یا ماکزیمم باشد یا تغییر نکند) که این هم به نوبت خود مستلزم آن است که x طوری انتخاب شود که dl/dx = 0 باشد.

    که بعد از حل اگر از آن نسبت به x مشتق بگیریم:


    dl/dx = n1 (1/2)(a² + x²) - 1/2 (2x) + n2 (1/2) (b² + (d - x)²) - 1/2 (2) (d-x) (-1) = 0
    این معادله را می توان به صورت زیر نوشت:


    2(n1x/(a² + x²)2 = n2 (d - x)/(b² + (d - x)²
    که با توجه به شکل فوق به صورت مقابل در می‌آید: n1Sinө1 = n2Sinө2 که همان قانون شکست است.

    نگاهی دوباره به اصل فرما
    حال می خواهیم با نگاهی درباره به اصل فرما، آن را برای یک سیستم لایه لایه توضیح می دهیم.
    فرض کنید مطابق شکل زیر، ماده ای لایه لایه مرکب از m لایه با ضریب شکستهای مختلف داشته باشیم. در این صورت زمان عبور از s به p برابر خواهد بود با:



    t = s1/v1 + s2/v2 + … + sm/vm

    یا:



    t = ∑mi = ∑si/vi

    که در آن ، si و vi به ترتیب طول مسیر و سرعت متناظر با i امین لایه‌اند. بنابراین:



    t = 1/c∑mi = ∑nisi

    که در آن عبارت مجموع را طول راه نوری ، که توسط پرتو نور پیموده شده است، می‌نامند. این کمیت با طول سیر فضایی فرق دارد. پس c/طول راه نوری = t . می توانیم اصل فرما را دوباره چنین بیان کنیم: نور در هنگام گذر از نقطه s به نقطه p ، مسیری را می‌پیماید که کوتاهترین راه نوری است.

    اصل فرما و حرکت پرتوهای خورشید در جو
    همانطور که می دانیم جو از تعداد زیادی لایه، با ضریب شکستهای مختلف تشکیل شده است. بنابراین وقتی که پرتوهای نور خورشید از میان جو ناهمگن زمین عبور می کنند، خم می شوند تا در هنگام گذشتن از نواحی پایین تر و چگالتر، هر چه زودتر خم شوند و در نتیجه طول راه نوری را کمینه سازند. به همین جهت می توان خورشید را حتی بعد از این که از زیر افق گذشته بادید شد.

    اصل فرما و پدیده سراب
    هنگامی که تحت زاویه‌ای خراشان به جاده‌ای نگریسته شود، به نظر می‌رسد که جاده را لایه‌ای از آب پوشانده است. هوای نزدیک به سطح جاده گرمتر و کم چگالتر از هوایی است که بالاتر از آن قرار دارد. پرتوها بسوی بالا خم شده و از کوتاهترین راه نوری می‌گذرند و با انجام این کار ، چنان به نظر می‌رسد که گویی از سطحی آینه‌ای بازتابیده‌اند. این پدیده را بویژه در بزرگراههای جدید و طویل می‌توان دید.




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  2. #12
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    انتشار
    نظریات اولیه:

    اسحاق نیوتن بر این باور بود که نور جهت انتشار به محیط مادی احتیاج داردو چون خلا را نمی توانست عاری از ماده بداند آنجا را ماده ناشناخته ای به نام اتر معرفی می کرد و چگونگی انتشار را همان مکانیزم انتشار صوت می دانست.


    بعد ازتولد ماهیت موجی نور این نظریه نقض شد. چون موج نوری در محیط خلا در غیاب ماده انتشار می یابد. امّا نیوتون دریافته بود که همیشه نور به خط مستقیم انتشار می یابدو با حضور پدیده های بازتاب و شکست در مرز ها و ردیابی پرتو در جهت عکس اصل بازگشت نور را ارائه داد.

    بدین معنی که اگر پرتوی از یک جسم نورانی بر یک سطحی تابیده و در آن باز تاب یا فته باشد در آخر مسیر پرتو (مثلا شکست) چشمه مجازیی را درنظر بگیریم که وجود خارجی ندارد و مسیر پرتو را در جهت عکس بر گردیم به چشمه حقیقی می رسیم.


    نظریات مدرن:

    با پیشرفت الکترو مغناطیس و ظهور شخصی چون ماکسول و ارائه نظریه الکترو مغناطیسی نور دیگرلزوم وجود محیط مادی بطور کلی کنار گذاشته شدو ایشان از روی معادلات بنیادی خود جهت انتشار اموج الکترومغناطیسی را جهت انتشار نور معرفی کرد. که سازگاری کامل با پدیده های نوری داشت.

    امّا آلبرت انیشتین و پلانک که نور را به عنوان بسته های فوتونی پر انرژی در نظر گرفتند اصول کلی انتشار نور در محیط ها را نیز ارائه دادند و انتشار نور را ازروی خاصیت موجی نور توجیه نمودند زیرا اینها اصل مکملی نور را قبول داشتند و خاصیت ذره ای نور را برای توجیه برخی پدیده های کوانتومی رد نمی کردند.


    مکانیزم انتشار:

    انیشتن اینگونه پیشنهاد نمود که سرعتی بالاتر از سرعت نور در خلا وجود ندارند و مقدار آن ثابت است. در حالت کلی تابش بسته های انرژی( کوانتوم های انرژی )است که با فرکانس معینی در محیط نیز به خط راست انتشار می یابد یعنی هم تولید نور در چشمه های نوری و هم در انتشارش در محیط به خط مستقیم صورت می پذیرد. امّا انتشار مستقیم الخط بودن نور در هدف ها ( گیرنده های نوری ) را آقای پلانگ هم با محاسبات دقیق و هم آزمایشات تأیید شده ، انجام داد.

    چگونگی انتشار نور در محیط مادی را پلانگ چنین توجیه نمود که چون مواد شامل اتم هاست و اتم ها نیز ساختار دو قطبی ها را دارند در اثر تابش نور بر اتم، اتم شروع به نوسان می کند و نوسان تشدید آن وقتی اتفاق می افتد که فرکانس نوسان با فرکانس نور برابر باشد در چنین حالتی اتم تحریک شده در اثر میدان، نور جدیدی از خود تابش می کند این نور تابشی از اتمی به اتم مجاور اثر می کند که منحر به انتشار نور در محیط می شود. که از این پدیده در تولید لامپ ها بهره عملی برده اند.


    کاربرد مدرن:

    انتشار نور در بلور ها نتایج و کشفیات ارزنده ای را ارائه داد بدین معنی که مبنای تشخیص حالت بلورین ماده ، تا آنجا که به خواص نوری مواد مربوط می شود. بر این پایه هست که بلور ها معمولا از لحاظ الکتریکی ناهمسانگرد هستند. یعنی قطبیدگیکه به وسیله یک میدان الکتریکی در یک بلور ایجاد می شود تنها ضریب ثابتی از میدان الکتریکی نیست بلکه به طریقی به جهت میدان در شبکه بلور بستگی دارد.

    سرعت انتشار یک موج نوری در یک بلور تابعی از جهت انتشار و قطبیدگی آن نور است و آن ضریب ثابت رابط میدان و قطبش حالا دیگر یک تانسور نه مؤلفه ای برای بلور ناهمسانگرد می باشد . به یاد داسته باشید که همواره سرعت انتشار «سرعت نور) از سرعت فاز نور کمتر و در خلا بیشترین مقدارش را دارد که برابر آن است.

    آلبرت انیشتین اثبات کرد که حاصلضرب سرعت انتشار در سرعت فاز برابر مقدار ثابت مجذور سرعت نور هست یعنی حاصلضرب اخیر همراه ناور را می ماند. که سرعت فازهمان سرعت ارتعاش و سرعت انتشار همان سرعت گروه موجی یا بسته موجی است که به یک فوتون نسبت می دهیم که همان سرعت انتشارش در محیط هاست.

    در بلور ها برای یک امتداد معین دو مقدار سرعت فاز وجود دارد. این دو مقدار به قطبیدگی های متعامد امواج نور وابسته اند. برای همین گفته می شود بلورها دارای خاصیت شکست دو گانه یا دو شکستی هستند. ( همانند کریستال دو شکستی )امّا همه بلورها این خاصیت شکست دو گانه را از خود نشان نمی دهند و وجود این ویژگی در بلور بستگی به تقارن آنها دارد بلورهایی که تقارن مکعبی دارند مانند کلرور سدیم ، هرگز شکست دو گانه از خود نشان نمی دهند و از لحاظ نوری [بلورهای [همسانگرد|همسانگرد)) هستند. همه بلور های غیر مکعبی دارای خاصیت شکست دو گانه می باشند.


    الگوی مکانیکی:

    الگوی عجیبی که برای قطبش پذیری ناهمسانگرد یک بلور ارائه شده الگوی فنری است به گونه ای که الکترونها توسط فنرهایی به اتم هایشان مقیدند این قید توسط فنرهایی مشابهت داده شده چون ساختار بلور نا همسانگرد است،این میزان نیروی بین هسته و الکترون در تمام اتم ها یکسان نیست، بنابرین سختی فنرها در جهت های مختلف جابه جایی الکترون از محل ترازمندیش در شبکه بلور متفاوت است پس جابه جایی الکترون از محل ترازمندیش در اثر یک میدان خارجی هم به مقدار آن و هم به جهت آن وابسته می باشد که الگوی بسیار مفیدی در انتشار نور در بلور های ناهمسانگرد است. که نورهای قطبشی را نیز با این الگو بررسی خواهیم کرد.
    __________________




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  3. #13
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    كاربرد هاي ليزر
    مقدمه
    امروزه ليزر كاربردهاي بيشماري دارد كه همه زمينه هاي مختلف علمي و فني فيزيك-شيمي-زيست شناسي - الكترونيك و پزشكي را شامل مي شود. همه اين كاربردها نتيجه مستقيم همان ويژگي هاي خاص نور ليزر است. كاربرد ليزر در فيزيك و شيمي اختراع ليزر و تكامل آن وابسته به معلومات پايه اي است كه در درجه اول از رشته فيزيك و بعد از شيمي گرفته شده اند. بنابراين طبيعي است كه استفاده از ليزر در فيزيك و شيمي از اولين كاربردهاي ليزر باشندرشته ديگري كه در آن ليزر نه تنها امكانات موجود را افزايش داده بلكه مفاهيم كاملا جديدي را عرضه كرده است طيف نمايي است. اكنون با بعضي از ليزرها مي توان پهناي خط نوساني را تا چند ده كيلوهرتز باريك كرد ( هم در ناحيه مرئي و هم در ناحيه فروسرخ ) و با اين كار اندازه گيري هاي مربوط به طيف نمايي با توان تفكيك چند مرتبه بزرگي ( 3 تا 6) بالاتر از روش هاي معمولي طيف نمايي امكان پذير مي شوند. ليزر همچنين باعث ابداع رشته جديد طيف نمايي غير خطي شد كه در آن تفكيك طيف نمايي خيلي بالاتر از حدي است كه معمولا با اثرهاي پهن شدگي دوپلر اعمال مي شود. اين عمل منجر به بررسيهاي دقيقتري از خصوصيات ماده شده است.در زمينه شيمي از ليزر هم براي تشخيص و هم براي ايجاد تغييرات شيميايي برگشت ناپذير استفاده شده است. ( فوتو شيمي ليزري) به ويژه در فون تشخيص بايد از روش هاي (پراكندگي تشديدي رامان ) و ( پراكندگي پاد استوكس همدوس رامان ) (CARS) نام ببريم. به وسيله اين روشها مي توان اطلاعات قابل ملاحظه اي درباره خصوصيات مولكولهاي چند اتمي به دست آورد ( يعني فركانس ارتعاشي فعال رامن - ثابتهاي چرخشي و ناهماهنگ بودن فركانس). روش CARS همچنين براي اندازه گيري غلظت و دماي يك نمونه مولكولي در يك ناحيه محدود از فضا به كار مي رود. از اين توانايي براي بررسي جزئيات فرايند احتراق شعله و پلاسما ( تخليه الكتريكي) بهره برداري شده است.شايد جالبتري كاربرد شيميايي ( دست كم بالقوه ) ليزر در زيمنه فوتو شيمي باشد. اما بايد در نظر داشته باشيم به خاطر بهاي زياد فوتونهاي ليزري بهره برداري تجاري از فوتوشيمي ليزري تنها هنگامي موجه است كه ارزش محصول نهايي خيلي زياد باشد. يكي از اين موارد جداسازي ايزوتوپها است.

    كاربرد در زيست شناسي
    از ليزر به طور روزافزوني در زيست شناسي و پزشكي استفاده مي شود. اينجا هم ليزر مي تواند ابزار تشخيص و يا وسيله برگشت ناپذير مولكولهاي زنده يك سلول و يا يك بافت باشد. ( زيست شناسي نوري و جراحي ليزري)در زيست شناسي مهمترين كاربرد ليزر به عنوان يك وسيله تشخيصي است. ما در اينجا تكنيك هاي ليزري زير را ذكر مي كنيم :
    الف) فلوئورسان القايي به وسيله تپهاي فوق العاده كوتاه ليزر در DNA در تركيب رنگي پيچيده DNA و در مواد رنگي موثر در فتوسنتز
    ب) پراكندگي تشديدي رامان به عنوان روشي براي مطالعه ملكولهاي زنده مانند هموگلوبين و يا رودوپسين ( عامل اصلي در سازوكار بينايي)
    ج) طيف نمايي همبستگي فوتوني براي بدست آوردن اطلاعاتي در مورد ساختار و درجه انبوهش انواع ملكولهاي زنده د) روشهاي تجزيه فوتوني درخشي پيكوثانيه اي براي كاوش رفتار ديناميكي مولكولهاي زنده در حالت برانگيخته

    به ويژه بايد از روشي موسوم به ميكروفلوئورمتر جريان ياد كرد. در اينجا سلولهاي پستانداران در حالت معلق مجبور مي شوند كه از يك اتاقك مخصوص جريان عبور كنند كه در آنجا رديف مي شوند و سپس يكي يكي از باريكه كانوني شده ليزر يوني آرگون عبور مي كنند. با قرار دادن يك آشكارساز نوري در جاي مناسب مي توان اين كميت ها را اندازه گيري كرد :

    الف) نورماده اي رنگي كه به يك جزء خاص تشكيل دهنده سلول يعني DNA متصل ( كه اطلاعاتي راجع بع مقدار آن جزء تشكيل دهنده سلول را به دست مي دهد) امتياز ميكروفلوئورمتري جريان در اين است كه اندازه گيري ها را براي تعداد زيادي از سلولها در مدت زمان محدود ميسر مي سازد. به اين وسيله مي توانيم دقت خوبي براي اندازه گيري آماري داشته باشيم.

    در زيست شناسي از ليزر براي ايجاد تغيير برگشت ناپذير در ملكولهاي زنده و يا اجزاي تشكيل دهنده سلول هم استفاده مي شود. به ويژه تكنيك هاي معروف به ريز - باريكه را ذكر مي كنيم. در اينجا نور ليزر ( مثلا يك ليزر Ar+ تپي ) به وسيله يك عدسي شيئي ميكروسكوپ مناسب در ناحيه اي از سلول با قطري در حدود طول موج ليزر (05 µm) كانوني مي شود منظور اصلي از اين تكنيك مطالعه رفتار سلول پس از آسيبي است كه با ليزر در ناحيه خاصي از آن ايجاد شده است.

    در زمينه پزشكي بيشترين كاربرد ليزرها در جراحي است ( جراحي ليزري) اما در بعضي موارد ليزر براي تشخيص نيز به كار مي رود. ( استفاده باليني از ميكروفلوئورمتر جريان - سرعت سنجي دوپلري براي اندازه گيري سرعت خون - فلوئورسان ليزري - آندوسكوپي ناي براي آشكارسازي تومورهاي ريوي در مراحل اوليهدر جراحي از باريكه كانوني شده ليزر ( اغلب ليزر CO2 ) به جاي چاقوي جراحي معمولي ( يا برقي ) استفاده مي شود. باريكه فروسرخ ليزر CO2 به شدت به وسيله ملكولهاي آب موجود در بافت جذب مي شود و موجب تبخير سريع اين ملكولها و در نتيجه برش بافت مي شود. برتريهاي اصلي چاقوي ليزري را مي توان به صورت زير خلاصه كرد :

    الف) دقت بسيار زياد به ويژه هنگامي كه باريكه با يك ميكروسكوپ مناسب هدايت شود ( جراحي ليزر)

    ب) امكان عمل در نواحي غير قابل دسترس.. بنابراين عملا هر ناحيه از بدن را كه با يك دستگاه نوري مناسب ( مثلا عدسي ها و آينه ها) قابل مشاهده باشد مي توان به وسيله ليزر جراحي كرد
    .
    ج) كاهش فوق العاده خونروي در اثر برش رگهاي خوني به وسيله باريكه ليزر ( قطر رگي حدود 0/5 mm )

    د) آسيب رساني خيلي كم به بافتهاي مجاور ( حدود چند ميكرومتر) اما در مقابل اين برتريها بايد اشكالات زير را هم در نظر داشت :الف) هزينه زياد و پيچيدگي دستگاه جراحي ليزريب) سرعت كمتر چاقوي ليزري ج) مشكلات قابليت اعتماد و ايمني مربوط به چاقوي ليزري

    با اين اشاره اجمالي به جراحي ليزري اكنون مي خواهيم به شرح مفصلتري از تعدادي از اين كاربردها بپردازيم . در چشم بيماران مبتلا به مرض قند استفاده شده است در اين مورد باريكه ليزر به وسيله عدسي چشم بر روي شبكيه كانوني مي شود. پرتو سبز ليزر به شدت به وسيله گلبول هاي سرخ جذب مي شود و اثر حرارتي حاصل باعث اتصال دوباره شبكيه يا انعقاد رگهاي آن مي شود. اكنون ليزر استفاده روزافزوني در گوش و حلق و بيني پيدا كرده است. استفاده از ليزر در اين شاخه از جراحي جذابيت خاصي دارد. زيرا با اعضايي مانند ناي - حلق و گوش مياني سروكار دارد كه به علت عدم دسترسي به آن ها جراحي معمولي مشكل است. اغلب در اين مورد ليزر همراه با يك ميكروسكوپ استفاده مي شود. همچنين ليزر براي جراحي داخل دهان نيز مفيد است ( براي برداشتن غده هاي مخاطي ). امتيازات اصلي در اينجا جلوگيري از خونريزي و فقدان لختگي خون و درد پس از عمل جراحي و بهبود سريع بيمار است. ليزر همچنين اهميت خود را در بهبود خونريزيهاي سنگين در جهاز هاضمه ثابت كرده است. در اين حالت باريكه ليزر ( معمولا ليزر نئودميوم يا آرگون يوني ) به وسيله يك تار نوري مخصوص كه در داخل يك آندوسكوپي داخلي قرار گرفته است پرتو ليزر را به ناحيه مورد معالجه هدايت مي كند. ليزر همچنين در بيماري زنان مفيد است درحالي كه اغلب به همراه يك ميكروسكوپ استفاده مي شود. كاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوي ليزري را بيان مي كند. در پوست درماني اغلب از ليزر براي برداشتن خالها و معالجه امراض رگها استفاده مي شود. بالاخزه استفاده از ليزرها در جراحي عمومي و جراحي غده اميدوار كننده است.

    ارتباط نوري

    استفاده از باريكه ليزر براي ارتباط در جو به خاطر دو مزيت مهم اشتياق زيادي برانگيخت :

    الف) اولين علت دسترسي به پهناي نوار نوساني بزرگ ليزر است. زيرا مقدار اطلاعات قابل انتقال روي يك موج حامل متناسب با پهناي نوار آن است. فركانس موج حامل از ناحيه ميكروموج بخ ناحيه نور مرئي به اندازه 104 برابر افزايش مي يابد و در نتيجه امكان استفاده از يك پهناي بزرگتر را به ما مي دهد.

    ب) علت دوم طول موج كوتاه تابش است. چون طول موج ليزر نوعا حدود 104 مرتبه كوچكتر از امواج ميكرو موج است با قطر روزنه يكسان D واگرايي امواج نوري به اندازه 104 مرتبه نسبت به واگرايي امواج ميكرو موج كوچكتر است. بنابراين براي دستيابي به اين واگرايي آنتن يك سيستم اپتيكي مي تواند به مراتب كوچكتر باشد. اما اين دو امتياز مهم با اين واقعيت خنثي مي شوند كه باريكه نوري تحت شرايط ديد ضعيف در جو به شدت تضعيف مي شود. در نتيجه استفاده از ليزرها در ارتباطات فضاي باز ( هدايت نشده ) فقط در مورد اين موارد توسعه يافته اند :

    الف) ارتباطات فضايي بين دو ماهواره و يا بين يك ماهواره و يك ايستگاه زميني كه در يك شرايط جوي مطلوب قرار گرفته است. ليزرهايي كه در اين مورد استفاده مي شوند عبارتند از :

    Nd:YAG ( با آهنگ انتقال 109 بيت در ثانيه ) و يا CO2 با آهنگ انتقال 3*108 بيت در ثانيه ). گرچه CO2 نسبت به Nd: YAG داراي بازدهي بالاتري است و لي داراي اين اشكال است كه نياز به سيستم آشكارسازي پيچيده تري دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.

    ب) ارتباطات بين دو نقطه در يك مسافت كوتاه مثلا انتقال اطلاعات درون يك ساختمان. براي اين منظور از ليزرهاي نيمرسانا استفاده مي شود.اما زمينه اصلي مورد توجه در ارتباطات نوري مبتني بر انتقال از طريق تارهاي نوري است. انتقال هدايت شده نور در تارهاي نوري پديده اي است كه از سالها پيش شناخته شده است اما تارهاي نوري اوليه فقط در مسافت هاي خيلي كوتاه مورد استفاده قرار مي گرفتند مثلا كاربرد متعارف آن ها در وسايل پزشكي براي اندوسكوپي است. بنابراين در اواخر سال 1960 تضعيف در بهترين شيشه هاي نوري در حدود 1000 دسي بل بر كيلومتر بود. از آن زمان پيشرفت تكنيكي شيشه و كوارتز باعث تغيير شگفت انگيز در اين عدد شده است به طوري كه اين تضعيف براي كوارتز به 5/0 دسي بل بر كيلومتر رسيده است. اين تضعيف فوق العاده كوچك آينده مهمي را براي كاربرد تارهاي نوري در ارتباطات راه دور نويد مي دهد سيستم ارتباطات تارهاي نوري نوعا شامل يك چشمه نور يك جفت كننده نوري مناسب براي تزريق نور به تارها و درانتها يك فوتوديود است كه باز هم به تار متصل شده است. تكرار كننده شامل يك گيرنده و يك گسيلنده جديد است. چشمه نور سيستم اغلب ليزرهاي نيمرساناي نا هم پيوندي دوگانه است. اخيرا طول عمر اين ليزرها تا حدود 106 ساعت رسيده است. گرچه تا كنون اغلب از ليزر گاليم ارسنيد GaAs استفاده شده است ولي روش بهتر استفاده از ليزرهاي نا هم پيوندي است كه در آنها لايه فعال تركيبي از آلياژ چهارگانه به صورت In1-x Gax Asy P1-y است. در اين حالت لبه هاي P ,n پيوندگاه از تركيب دوگانه InP تشكيل شده است و با استفاده از تركيب y=2v2x مي توان ترتيبي داد كه چهار آلياژ چهارگانه شبكه اي كه با InP جور شود با انتخاب صحيح x طول موج تابش را طوري تنظيم كرد كه در اطراف µm 3/1 و يا اطراف 6/1 µm واقع شود كه به ترتيب مربوط به دو مينيموم جذب در تار كوارتز هستند. بسته به قطر d هسته مركزي تار ممكن است از نوع تك مدباشد براي آهنگ انتقال متداول فعلي حدود 50 مگابيت در ثانيه معمولا از تارهاي چند مدي استفاده مي شود. براي آهنگ انتقال هاي بيشتر تارهاي تك مدي مناسبتر به نظر مي رسند. گيرنده معمولا يك فوتوديود بهمني است اگر چه ممكن است از يك ديود PIN و يك ديود تقويت كننده حالت جامد مناسب نيز استفاده كرد.

    اندازه گيري و بازرسي

    خصوصيات جهتمندي درخشايي و تكفامي ليزر باعث كاربردهاي مفيد زيادي براي اندازه گيري و بازرسي در رشته مهندسي سازه و فرايندهاي صنعتي كنترل ابزار ماشيني شده است. در اين بخش تعيين فاصله بين دو نقطه و بررسي آلودگي را نيز مد نظر قرار مي دهيميكي از معمولترين استفاده هاي صنعتي ليزر هم محور كردن است. براي اينكه يك خط مرجع مستقيم براي هم محور كردن ماشين آلات در ساخت هواپيما و نيز در مهندسي سازه براي ساخت بناها پلها و يا تونلها داشته باشيم استفاده از جهتمندي ليزر سودمند است. در اين زمينه ليزر به خوبي جاي وسايل نوري مانند كليماتور و تلسكوپ را گرفته است. معمولا از يك ليزر هليم - نئون با توان كم استفاده مي شود و هم محور كردن عموما به كمك آشكارسازهاي حالت جامد به شكل ربع دايره اي انجام مي شود. محل برخورد باريكه ليزر روي گيرنده با مقدار جريان نوري روي هر ربع دايره معين مي شود. در نتيجه هم محور شدن بستگي به يك اندازه گيري الكتريكي دارد و در نتيجه نيازي به قضاوت بصري آزمايشگر نيست. در عمل دقت رديف شدن از حدود 5µm تا حدود 25µm به دست آمده است.از ليزر براي اندازه گيري مسافت هم استفاده شده است. روش استفاده از ليزر بستگي به بزرگي طول مورد نظر داردبراي مسافتهاي كوتاه تا 50 متر روشهاي تداخل سنجي به كار گرفته مي شوند كه در آن ها از يك ليزر هليم - نئون پايدار شده فركانسي به عنوان منبع نور استفاده مي شود. براي مسافتهاي متوسط تا حدود 1 كيلومتر روشهاي تله متري شامل مدوله سازي دامنه به كار گرفته مي شود. براي مسافت هاي طولاني تر مي توان زمان در راه بودن تپ نوري را كه از ليزر گسيل شده است و از جسمي بازتابيده مي شود اندازه گيري كرد.در اندازه گيري تداخل سنجي مسافت از تداخل سنج مايكلسون استفاده مي شود. باريكه ليزر به وسيله يك تقسيم كننده نور به يك باريكه اندازه گيري و يك باريكه مرجع تقسيم مي شود باريكه مرجع با يك آينه ثابت بازتابيده مي شود در حالي كه باريكه اندازه گيري از آينه اي كه به جسم مورد اندازه گيري متصل شده است بازتاب پيدا مي كند. سپس دو باريكه بازتابيده مجددا با يكديگر تركيب مي شوند به طوري كه با هم تداخل مي كنند و دامنه تركيبي آن ها با يك آشكار ساز اندازه گيري مي شود. هنگامي كه محل جسم در جهت باريكه به اندازه نصف طول موج ليزر تغيير كند سيگنال تداخل از يك ماكزيموم به يك مينيموم مي رسد و سپس دوباره ماكزيموم مي شود. بنابراين يك سيستم الكترونيكي شمارش فريزها مي تواند اطلاعات مربوط به جابجايي جسم را به دست دهد. اين روش اندازه گيري معمولا در كارگاههاي ماشين تراش دقيق مورد استفاده قرار مي گيرد و امكان اندازه گيري طول با دقت يك در ميليون را مي دهد. بايد يادآوري كرد كه در اين روش فقط مي توان فاصله را نسبت به يك مبدا اندازه گيري كرد. برتري اين روش در سرعت دقت و انطباق با سيستم هاي كنترل خودكار است.

    كاربردهاي نظامي

    كاربردهاي نظامي ليزر هميشه عمده ترين كاربردهاي آن بوده است . فعلا مهمتريم كاربردهاي نظامي ليزر عبارت اند از:
    الف) فاصله يا بهاي ليزري
    ب) علامت گذارهاي ليزري
    ج) سلاح هاي هدايت انرژي

    فاصله ياب ليزري مبتني بر همان اصولي است كه در رادارهاي معمولي از آن ها استفاده مي شود. يك تپ كوتاه ليزري ( معمولا با زمان 10 تا 20 نانوثانيه) به سمت هدف نشانه گيري مي شود و تپ پراكنده برگشتي بوسيله يك دريافت كننده مناسب نوري كه شامل آشكارساز نوري است ثبت مي شود. فاصله مورد نظر با اندازه گيري زمان پرواز اين تپ ليزري به دست مي ايد. مزاياي اصلي فاصله ياب ليزري را مي توان به صورت زير خلاصه كرد :

    الف) وزن - قيمت و پيچيدگي آن به مراتب كمتر از رادارهاي معمولي است.

    ب) توانايي اندازه گيري فاصله حتي براي هنگامي كه هدف در حال پرواز در ارتفاع بسيار كمي از سطح زمين و يا دريا باشد

    .اشكال عمده اين نوع رادار در اين است كه باريكه ليزر در شرايط نامناسب رويت به شدت در جو تضعيف مي شود. فعلا چند نوع از فاصله يابهاي ليزري با بردهاي تا حدود 15 كيلومتر مورد استفاده اند

    : الف) فاصله ياب هاي دستي براي استفاده سرباز پياده ( يكي از آخرين مدل هاي آن در آمريكا ساخته شده كه در جيب جا مي گيرد و وزن آن با باتري حدود 500 گرم است.

    ب) سيستم هاي فاصله ياب براي استفاده در تانكها

    ج) سيستم هاي فاصله ياب مناسب براي دفاع ضد هوايي اولين ليزرهاي كه در فاصله يابي از آن ها استفاده شد ليزرهاي ياقوتي با سوئيچ Q بودند. امروزه فاصله يابهاي ليزري اغلب بر اساس ليزرهاي نئودميم با سوئيچ Q طراحي شده اند. گرچه ليزرهاي CO2 نوع TEA در بعضي موارد( مثل فاصله ياب تانك ها ) جايگزين جالبي براي ليزرهاي نئودميم است.دومين كاربرد نظامي ليزر در علامت گذاري است. اساس كار علامت گذاري ليزري خيلي ساده است :

    ليزري كه در يك مكان سوق الجيشي قرار گرفته است هدف را روشن مي سازد به خاطر روشنايي شديد نور هنگامي كه هدف به وسيله يك صافي نوري با نوار باريك مشاهده شود به صورت يك نقطه روشن به نظر خواهد رسيد. سلاح كه ممكن است بمب - موشك - و يا اسلحه منفجر شونده ديگري باشد بوسيله يك سيستم احساسگر مناسب مجهز شده است. در ساده ترين شكل اين احساسگر مي تواند يك عدسي باشد كه تصوير هدف را به يك آشكارساز نوري ربع دايره اي كه سيستم فرمان حركت سلاح را كنترل مي كند انتقال مي دهد و بنابراين مي تواند آن را به سمت هدف هدايت كند. به اين ترتيب هدف گيري با دقت بسيار زياد امكان پذير است. ( دقت هدف گيري حدود 1 متر از يك فاصله 10 كيلومتري ممكن به نظر مي رسد.) معمولا ليزر از نوع Nd: YAG است.

    در حالي كه ليزرهاي CO2 به خاطر پيچيدگي آشكارسازهاي نوري ( كه مستلزم استفاده در دماهاي سرمازايي است) نامناسب اند. علامت گذاري ممكن است از هواپيما - هليكوپتر و يا از زمين انجام شود. ( مثلا با استفاده از يك علامت گذار دستي ). اكنون كوشش قابل ملاحظه اي هم در آمريكا و هم در روسيه براي ساخت ليزرهايي كه به عنوان سلاحههاي هدايت انرژي به كار مي روند اختصاص يافته است. در مورد سيستم هاي قوي ليزري مورد نظر با توان احتمالا در حدود مگا وات ( حداقل براي چند ده ثانيه ) يك سيستم نوري باريكه ليزر را به هدف (هواپيما - ماهواره يا موشك ) هدايت مي كند تا خسارت غير قابل جبراني به وسايل احساسگر آن وارد كند و يا اينكه چنان آسيبي به سطح آن وارد كند كه نهايتا در اثر تنش هاي پروازي دچار صدمه شود سيستم هاي ليزر مستقر در زمين به خاطر اثر معروف به شوفايي گرمايي كه در جو اتفاق مي افتد فعلا چندان عملي به نظر نمي رسند.

    جو زمين توسط باريكه ليزر گرم مي شود و اين باعث مي شود كه جو مانند يك عدسي منفي باريكه را واگرا سازد با قرار دادن ليزر در هواپيماي در حال پرواز در ارتفاع بالا و يا در يك سفينه فضايي مي توان از اين مساله اجتناب ورزيد. اطالعات موجود در اين زمينه ها به علت سري بودن آن ها اغلب ناقص و پراكنده اند. اما به نظر مي رسد كه اين سيستم ها كلا شامل باريكه هايي پيوسته با توان 5 تا 10 مگا وات (براي چند ثانيه ) با يك وسيله هدايت اپتيكي به قطر 5 تا 10 متر باشند مناسب ترين ليزرها براي اينگونه كاربرد ها احتمالا ليزرهاي شيميايي اند ( DF يا HF) . ليزرهاي شيميايي به ويژه براي سيستم هاي مستقر در فضا جالب اند زيرا توسط آن ها مي توان انرژي لازم را به صورت انرژي ذخيره فشرده به شكل انرژي شيميايي تركيب هاي مناسب تامين كرد.

    تمام نگاري

    تمام نگاري يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد

    .اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد.

    فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست

    .يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد:
    الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود.
    ب) وضعيت نسبي جسم - صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند.
    ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.
    __________________




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  4. #14
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    فيبر نوري
    بعد از اختراع ليزر در سال 1960 ميلادي، ايده بكارگيري فيبر نوري براي انتقال اطلاعات شكل گرفت .خبر ساخت اولين فيبر نوري در سال 1966 همزمان در انگليس و فرانسه با تضعيفي برابر با اعلام شد كه عملا درانتقال اطلاعات مخابراتي قابل استفاده نبود تا اينكه در سال 1976 با كوشش فراوان محققين تلفات فيبر نوري توليدي شديدا كاهش داده شد و به مقدار رسيد كه قابل ملاحظه با سيم هاي كوكسيكال مورد استفاده در شبكه مخابرات بود.

    در ايران در اوايل دهه 60 ، فعاليت هاي تحقيقاتي در زمينه فيبر نوري در مركز تحقيقات منجر به تاسيس مجتمع توليد فيبر نوري در پونك تهران گرديدو عملا در سال 1373 توليد فيبرنوري با ظرفيت 50.000 كيلومتر در سل در ايران آغاز شد.فعاليت استفاده از كابل هاي نوري در ديگر شهرهاي بزرگ ايران شروع شد تا در آينده نزديك از طريق يك شبكه ملي مخابرات نوري به هم متصل شوند.

    فيبرنوري يك موجبر استوانه اي از جنس شيشه (يا پلاستيك) كه دو ناحيه مغزي وغلاف با ضريب شكست متفاوت ودولايه پوششي اوليه وثانويه پلاستيكي تشكيل شده است . بر اساس قانون اسنل براي انتشار نور در فيبر نوري شرط : مي بايست برقرار باشد كه به ترتيب ضريب شكست هاي مغزي و غلاف هستند . انتشار نور تحت تاثير عواملي ذاتي و اكتسابي ذچار تضعيف مي شود. اين عوامل عمدتا ناشي از جذب ماوراي بنفش ، جذب مادون قرمز ،پراكندگي رايلي، خمش و فشارهاي مكانيكي بر آنها هستند . منحني تغييرات تضعيف برحسب طول موج در شكل زير نشا ن داده شده است.


    فيبرهاي نوري نسل سوم


    طراحان فيبرهاي نسل سوم ، فيبرهايي را مد نظر داشتند كه داراي حداقل تلفات و پاشندگي باشند. براي دستيابي به اين نوع فيبرها، محققين از حداقل تلفات در طول موج 55/1 ميكرون و از حداقل پاشندگي در طول موج 3/1 ميكرون بهره جستند و فيبري را طراحي كردند كه داراي ساختار نسبتا پيچيده تري بود. در عمل با تغييراتي در پروفايل ضريب شكست فيبرهاي تك مد از نسل دوم ، كه حداقل پاشندگي ان در محدوده 3/1 ميكرون قرار داشت ، به محدوده 55/1 ميكرون انتقال داده شد و بدين ترتيب فيبر نوري با ماهيت متفاوتي موسوم به فيبر دي.اس.اف ساخته شد.


    كاربردهاي فيبر نوري


    الف)كاربرد در احساسگرها


    استفاده از احساسگرهاي فيبر نوري براي اندازه گيري كميت هاي فيزيكي مانندجريان الكتريكي، ميدان مغناطيسي فشار،حرارت ،جابجايي،آلودگي آبهاي دريا سطح مايعات ،تشعشعات پرتوهاي گاماوايكس در سال هاي اخير شروع شده است . در اين نوع احساسگرها ، از فيبر نوري به عنوان عنصر اصلي احساسگر بهره گيري مي شود بدين ترتيب كه خصوصيات فيبر تحت ميدان كميت مورد اندازه گيري تغيير يافته و با اندازه شدت كميت تاثير پذير مي شود.


    ب)كاربردهاي نظامي


    فيبرنوري كاربردهاي بي شماري در صنايع دفاع دارد كه از آن جمله مي توان برقراري ارتباط و كنترل با آنتن رادار، كنترل و هدايت موشك ها ، ارتباط زير دريايي ها (هيدروفون) را نام برد .


    ج)كاربردهاي پزشكي


    فيبرنوري در تشخيص بيماري ها و آزمايش هاي گوناگون در پزشكي كاربرد فراوان دارد كه از آن جمله مي توان دزيمتري غدد سرطاني ، شناسايي نارسايي هاي داخلي بدن،جراحي ليزري فاستفاده در دندانپزشكي و اندازه گيري مايعات و خون نام برد .


    فن آوري ساخت فيبرهاي نوري


    براي توليد فيبر نوري ، ابتدا ساختار آن در يك ميله شيشه اي موسوم به پيش سازه از جنس سيليكا ايجادمي گردد و سپس در يك فرايند جداگانه اين ميله كشيده شده تبديل به فيبرمي گردد . از سال 1970 روش هاي متعددي براي ساخت انواع پيش سازه ها به كار رفته است كه اغلب آنها بر مبناي رسوب دهي لايه هاي شيشه اي در اخل يك لوله به عنوان پايه قرار دارند .


    روشهاي ساخت پيش سازه


    روش هاي فرايند فاز بخار براي ساخت پيش سازه فيبرنوري را مي توان به سه دسته تقسيم كرد :



    رسوب دهي داخلي در فاز بخار


    رسوب دهي بيروني در فاز بخار


    رسوب دهي محوري در فاز بخار




    موادلازم در فرايند ساخت پيش سازه


    - تتراكلريد سيلسكون :اين ماده براي تا مين لايه هاي شيشه اي در فرايند مورد نياز است .
    - تتراكلريد ژرمانيوم : اين ماده براي افزايش ضريب شكست شيشه در ناحيه مغزي پيش سازه استفاده مي شود .
    - اكسي كلريد فسفريل: براي كاهش دماي واكنش در حين ساخت پيش سازه ، اين مواد وارد واكنش مي شود .
    - گازفلوئور : براي كاهش ضريب شكست شيشه در ناحيه غلاف استفاده مي شود .
    - گاز هليم : براي نفوذ حرارتي و حباب زدايي در حين واكنش شيميايي در داخل لوله مورد استفاده قرار مي گيرد.
    - گاز كلر: براي آب زدايي محيط داخل لوله قبل از شروع واكنش اصلي مورد نياز است .


    مراحل ساخت


    + مراحل سيقل حرارتي: بعد از نصب لوله با عبور گاز هاي كلر و اكسيژن ، در درجه حرارت بالاتر از 1800 درجه سلسيوس لوله صيقل داده مي شود تا بخار اب موجود در جدار داخلي لوله از ان خارج شود.
    + مرحله اچينگ: در اين مرحله با عبور گازهاي كلر، اكسيژن و فرئون لايه سطحي جدار داخلي لوله پايه خورده مي شود تا ناهمواري ها و ترك هاي سطحي بر روي جدار داخلي لوله از بين بروند .
    + لايه نشاني ناحيه غلاف : در مرحله لايه نشاني غلاف ، ماده تترا كلريد سيليسيوم و اكسي كلريد فسفريل به حالت بخار به همراه گاز هاي هليم و فرئون وارد لوله شيشه اي مي شوند ودر حالتي كه مشعل اكسي هيدروژن با سرعت تقريبي 120 تا 200 ميلي متر در دقيقه در طول لوله حركت مي كند و دمايي بالاتر از 1900 درجه سلسيوس ايجاد مي كند ، واكنش هاي شيميايي زير ب دست مي آيند.

    ذرات شيشه اي حاصل از واكنش هاي فوق به علت پديده ترموفرسيس كمي جلوتر از ناحيه داغ پرتاب شده وبر روي جداره داخلي رسوب مي كنند و با رسيدن مشعل به اين ذرات رسوبي حرارت كافي به آنها اعمال مي شود به طوري كه تمامي ذرات رسوبي شفاف مي گردند و به جدار داخلي لوله چسبيده ويكنواخت مي شوند.بدين ترتيب لايه هاي يشه اي مطابق با طراحي با تركيب در داخل لوله ايجاد مي گردد و در نهايت ناحيه غلاف را تشكيل مي دهد.

    منبع :www.physicsir.com




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  5. #15
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    آيا ذرات نوري وجود دارند؟


    صدها آزمايش گوناگون ثابت كرده كه امواج نوري ووجود دارند .اين امواج بر خلاف امواج آب و امواج صوتي . در خلاء نيز انتشار مي يابد . نور . امواج راديويي امواج مادون قرمز .امواج ماوراء بنفش و امواج (روتنگن ) همگي به خانواده بزرگ (امواج مغناطيسي ) تعلق دارند .
    ماون قرمز به نوبه خود نسبت به نور قرمز از طول موج بلندتري برخودار است . در حالي كه نور مارواءبنفش داراي طول موج كوتاهتري از نور بنفش بوده و اشعه رونتگن در جاي خود طول موج كوتاهتر ي از نور ماوراء بنفش دارد . تا آغاز قرن حاضر اين طور تصور مي شد كه با توجه به آگاهي ذهني كه انسان از نور به عنوان موج دارد به تمام خصوصيات نو ر پي برده و آن را كاملاً شناخته است .ولي با ظهور فيزيكدانهاي بزرگي چون "پلانك " و "اينشتين " اين تصور تغيير يافت .
    آنها يك بار ديگر نشان دادند كه در قلمرو سريتعترينها و كو چكترينها قوه تخيل و درك و استنباط ما از كار باز مي ايستد و عاجر مي ماند و طبيعت دراين زمينه كاملاً مغاير با آنچه انتظارداريم رفتار مي كند . اينشتين به اين مطلب پي برد كه :انرژي مربوط به يك موج الكترو مغناطيسي همواره در مجموعه ها و بسته هاي كوچك يا به اصطلاح در "كوانت ها " يا ذره هاي معنين منتقل مي شوند كه امروزه آنها را "فوتون "يا "ذره نوري " مي نامند . بطور خلاصه بسته به اينكه چه نوع آزمايشي بر روي نور انجام مي شود و چه تجربه اي در حال اجرا است .نور مي تواند به صورت موج يا ذره نمودار شود.
    هر چه طول موج نو كوتاهتر باشد انرژي ذره نوري مربوط به آن بيشتر است . نور آبي طول موج كوتاهتري از نور قرمز دارد به همين ديليل فوتونهاي نور آبي انرژي بيشتري نسبت به فوتونهاي نور قرمز دارند . پرتوهاي "رونتگن " طول موجي باز هم كوتاهت ر دارند و در نتيجه فوتونهاي اشعه رونتگن ، پر انرژي هستندمثلاَ تشعشعات رونتگن مي توانند در عمق بدن اسنان نفوذ كنند و اين خاصيتي است كه پزشكان ،آگاهانه از آن براي تشخيص شكستگي استخوانها ،استفاده مي كنند .
    ذر ات نوري يا "فوتونها " مانند اتمها يا الكترونها داراي جرم نيستند و در تمام طول عمر خود با سرعت نور در حركت هستند .
    البته خيلي مشكل مي توان تصور كر د كه ذراتي بدوون جرم وجود داشته باشند ولي با خودانرژي به اين طرف و آن طرف حمل كنندو يا اينكه نو يك بار به صورت موج و بار ديگر به صورت جريان ذره اي نمودار شود . اما اين دقيقاَ خصوصيات فيزيك جديد در قرن بيستم است .البته مي توامسير جريانات را در سرزمين اتمها از طريق رياضيات محاسبه كرد .براي اين منظور معامله اي وجود دارد كه مي توان با آن انرژي نو را با توجه به طول موج آن محاسبه كرد ،ولي تصور و تخيل ما اغلب اوقات براي درك سير تحولات طبيعي در قلمر و كوچكترينها و سريعترينها محدود و ناتوان است .
    شايد مغز ما و به پيروي از آن نيروي تصور و تخيل ما از ابتدا براي درك مسايلي چون اتمها و كيهان پيش بيني نشده بوده و بلكه براي اين بوده كه فرضاً در جستجوي غذاي خودباشيم ،و يا اينكه كه غارخود را پيدا كنيم ،يا اينكه حيوان درنده اي مثل شير را در جنگل تشخيص دهيم و به عبارت ديگر چيزهايي را تجزيه و تحليل و ارزيابي كنيم كه يك سانتيمتر، يك متر و يا يك كيلو متر اندازه دارند و سريعتر از 100كيلو متر در ساعت حر كت نمي كنند.


    منبع : physicsir.com




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  6. #16
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    پديده فتوولتائيك
    اثر فتوالكتريك كه براي اولين بار توسط آلبرت انيشتين شرح داده شد. بر اساس اين پديده وقتي كه يك كوانتوم انرژي نوري يعني يك فوتون در يك ماده نفوذ مي كند، اين احتمال وجود دارد كه بوسيله الكترون جذب شود. و الكترون انتقال پيدامي كند.

    اخيراً دانشمندان آمده اند سلولهاي خورشيدي ساخته اند. وقتي كه امواج الكترو مغناطيسي خورشيد برروي آن مي تابد، جفت ماده ها ( الكترون و پوزيترون ) يعني در نوار گاف نيم رسانا به تعداد زياد توليد مي شود «توليد زوج). در نتيجه برهم كنشهاي فيزيكي بين ذرات صورت مي گيرد كه نهايتاً منجر به يك پيل خورشيدي مي شود.

    مواد سازنده سلول هاي خورشيدي

    ماده اي كه سلولهاي خورشيدي از آنها ساخته مي شود سيليكون و آرسينورگاليم هستند. سلولهايي كه از سيليكون ساخته مي شوند از لحاظ تئوري بازده ماكزيمم حدود 22 درصد دارند. ولي بازده عملي آن حدود 15 تا 18 درصد است. در صورتي كه بازده سلولها يي كه از آرسينورگاليم ساخته مي شود بازده عملي آنها بيشتر از 20 درصد است.

    ماهواره هاي دريافت كننده انرژي خورشيدي

    يك ايستگاه فضايي در مداري كه هم زمان با زمين در حركت باشد دايماً با تابش خورشيد روشن مي شود. برقراري ماهواره هاي خورشيدي در مدار زمين بطور جدي در سال 1968 پيشنهاد شد. در اين ماهواره ها پانل هايي ساخته اند از جنس آرسينوگاليم كه انرژي خورشيد را دريافت و تبديل به جفت الكترون مي كند، در داخل ماده الكترون ها شروع به حركت مي كنند كه نهايتاً منجر به توليد الكتريسته مي شود. ضريب توان سلولها 18% ولتاژ بالاي آن 40 كيلو وات با 5% اتلاف توان محاسبه شده است.


    منبع : دانشنامه رشد




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  7. #17
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    پيشرفتي جديد در فناوري سيستم اپتيكهاي سازگار
    اخترشناسان ادعا مي كنند با اين سيستم جديد مي توانند سياراتي در اندازه مشتري را در فاصله 26 سال نوري زمين تفكيك كنند .



    تلسكوپ 5/6 واقع در قله هاپكينز در ايالت آريزوناي آمريكا به ابزار جديدي مجهز شده است كه مي تواند تصاوير ناب و بي نظيري از جهان تهيه كند.اين پيشرفت جديد در فناوري سيستمهاي اپتيك سازگار با كمك آينه ثانويه جديد اين تلسكوپ به دست آمده است كه بيش از 70 سانتيمتر قطر و ضخامتي كمتر از دو ميليمتر دارد.اين آينه ثانويه در يك ميدان مغناطيسي واقع شده هر يك هزارم ثانيه يكبار تغييراتي در انحناي آن به وجود مي آيد كه موجب اصلاح تصوير نهايي و رهايي آن از تاثيرات اغتشاشات جوي مي شود. اين تلسكوپ كه در سال 1970 ساخته شده بود به نام تلسكوپ با آينه چندگانه MMT ناميده شد. در سال گذشته 6 آينه تشكيل دهنده آينه اوليه آن با يك آينه يكپارچه 5/6 متري تعويض شد .( اگر چه اين تغيير موجب تغيير نام اين تلسكوپ نشد). پس از اين تعويض دانشمندان رصدخانه دانشگاه آريزونا در آمريكا و رصدخانه اختر فيزيك آرستري ايتاليا بر روي ساختار آينه ثانويه اين تلسكوپ متمركز شدند و سرانجام موفق شدنداين آينه ثانويه را كه قلب سيستم اپتيك سازگار اين تلسكوپ است را تهيه كنند.

    در طراحي سيستم اپتيك سازگار از دو استراتژي كلي استفاده مي شود اول آنكه هدفي مصنوعي ( مانند يك ستاره مجازي كه توسط پرتو ليزر ايجاد شده است) براي تلسكوپ تعيين مي گردد و از آن پس سيستم تنظيم فوكوس تلسكوپ با توجه به تغييرات ظريفي كه براثر اختلالات جوي در تصوير ستاره مجازي ايجاد مي شود به تصحيح و تنظيم فوكوس تصاوير مي پردازد.در روش دوم سيستم كنترلي بر روي آينه تلسكوپ تعبيه مي گردد كه پس از ثبت اغتشاشات جوي با اعمال تغييرات جزيي در انحنا آينه ها اثر اين اغتشاشات را از بين مي برد. در تلسكوپ MMT نيز از همين استراتژي استفاده شده است.

    در سيستم جديد اصلاح پرتوهاي نوري مشتقيما توسط آينه ثانويه صورت مي گيرد.و نتايج حاصله نشان از كارآمدي ان دارد. فناوري بالا و مراحل بسيار مشكل ساخت آينه اي با خصوصيات آينه ثانويه MMT كه قابلت انحنا پذيري سريع داشته باشد اصلي ترين علتي بود كه اين سيستم اپتيك سازگار تا كنون به كار گرفته نشود. تيم سازنده اين سيستم نيز پس از صرف چندين سال مطالعه و تحقيق اين گام بزرگ را برداشته اند. در سيستم اپتيك سازگار طراحي شده براي MMT يك حسگر بسيار حساس اغتشاشات جوي را ثبت و به كامپيوتري كه پشت آينه ثانويه قرار دارد منتقل مي كند. اين كامپيوتر نيز با كنترل 336 محرك الكترو مغناطيسي به اعمال تغييرات انحنا در آينه ثانويه مي پردازد كه در نتيجه نور جمع آوري شده از آينه اوليه با بالاترين كيفيت ممكن واردسيستم فوكوس مي گردد.اخترشناسان اين تلسكوپ را در آبان و دي امسال مورد آزمايش قرار دادند كه نتايج آن كاملا رضايت بخش بود . يكي از محققان اين طرح اعلام كرده است با كمك اين ابزار مي توان سياره اي در اندازه هاي مشتري را در فاصله 26 سال نوري از زمين مستقيما آشكار كرد. اخترشناسان اميدوارند با نصب اين سيستم برروي تلسكوپهاي بزرگتر بتوانند سيارات زمين مانند را حول ستاره هاي نزديك جستجو و پيدا كنند.

    منبع :www.nojum.ir




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  8. #18
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    سرعت نور ثابت نيست
    تئوري جديدي كه دانشمندان استراليايي مطرح كرده‌اند و سرعت نور را ثابت نمي‌دانند مهمترين تئوري فيزيك نوين يعني نسبيت انيشتين را از اريكه قدرت به پايين مي‌‌كشد.
    تيم فيزيك‌دانان دانشگاه مك كواري سيدني در استراليا به رياست پال ديويز Paul Davies احتمال آن كه سرعت نور طي ميلياردها سال كندتر شده باشد را مطرح ساخته‌اند. در اين صورت فيزيكدانان بايد در مورد بسيار از فرضيه‌ها و تئوريهاي پايه بويژه در مورد قوانين حاكم بر عالم تجديد نظر كنند. ديويز در مصاحبه با رويتر گفت: «معني اين تئوري جديد آن است كه بايد از خير تئوري نسبيت و فرمول E=mc2 و اين جور چيزها بگذريم البته نه به اين معني كه كتابها را در اين مورد دور بيندازيم؛ هميشه تحولات علمي تئوريهاي قديمي‌تر را در خود هضم مي‌‌كند‌».
    نتايج تحقيقات اين تيم در مجله نيچر Nature به چاپ رسيده است. جان وب اختر شناس دانشگاه نيوساوث ويلز با ارائه تئوري خود براساس شواهدي كه به دست آمده است ادعا مي‌‌كند كه سرعت نور مي‌‌تواند ثابت نباشد، كه اين موضوع معماي لاينحلي را پيش روي فيزيكدانان و اخترشناسان قرار داده است. براساس يافته‌هاي وب، نوري كه از كوثر- Quasar شي‌ء شبيه به ستاره در آسمان - در طي دوازده ميليارد سال سفر خود تا رسيدن به زمين فوتونهايي از سحابي بين ستاره‌اي دريافت كرده است كه با فوتونهايي كه تاكنون مي‌‌شناختيم تفاوت دارد.
    ديويز در توضيح يافته‌هاي وب مي‌‌گويد: مشاهدات وب به معني آن است كه ساختار اتمهايي كه از نور كوثر ساطع مي‌‌شود تفاوت بسيار جزيي اما با اهميت ساختار اتمهاي انسان دارد. دليل اين تفاوت فقط مي‌‌تواند از دو چيز ناشي شود: يا بخاطر سرعت نور و يا بخاطر تخليه الكتروني (Electron Charge)؛ از سويي دو قانون در قوانين فيزيك كيهاني مطرح است كه سالهاست مورد پرسش قرار گرفته است.
    براساس اين دو قانون نه تخليه الكتروني و نه سرعت نور قابل تغيير نيستند. اما بايد براي مشاهدات وب توضيحي داد: يا اين مشاهدات اشتباه است و يا يكي از دو قانون ثبات سرعت نور و يا تخليه الكتروني قابل تكيه نيست. تيم ديويز بنا را براين گذاشتند كه مشاهدات وب درست بوده و يكي از اين دو قانون ممكن است آنطور كه تصور مي‌‌شد غيرقابل تغيير نباشد.
    به اين ترتيب اين تيم به مطالعه سياه چاله‌ها روي آوردند سياه چاله‌ها توده‌هاي عظيم و اسرارآميزي هستند كه ماده را مي‌‌بلعند و حتي نور نيز از چنگال اين مكنده در امان نيست. اگر قرار باشد به قانون دوم ترموديناميك- كه خود يك دگماتيسم ديگر در فيزيك است- اعتقاد داشته باشيم در اين صورت تغيير در قانون ثبات تخليه الكتروني قانون دوم ترموديناميك را در هم خواهد ريخت به همين دليل يك گزينه باقي ماند و آن بررسي امكان متغير بودن سرعت نور است.
    گرچه هنوز مطالعات به اندازه كافي نيست و مشاهدات وب از نور كوثر براي درهم ريختن تئوري‌هاي موجود كافي نيست اما مطالعه در اين زمينه از چندي پيش آغاز شده است. ا ز جمله مي‌‌توان به مقاله‌هايي كه در مجله Physical Review Letters منتشر شده مراجعه كرد و گرچه بسياري از وفاداران به تئوريهاي موجود سعي دارند مشاهدات وب و ديويز را اشتباه مشاهده‌اي و اشتباه محاسباتي و آماري جلوه دهند، اما بحثي كه در اين زمينه آغاز شده است روز به روز دامنه‌دارتر مي‌‌شود و به همان اندازه‌اي كه خود كيهان سئوالات لاينحل باقي گذاشته مشاهدات اخير نيز بسياري از تئوريها را به چالش كشانده است.
    در اين وضعيت بايد روشن شود به چه چيزهايي از تئوري گذشته مي‌‌توان تكيه كرد و بايد ديد تئوريهاي جديد از عهده پاسخگويي به بسياري از پرسشها بر مي‌‌آيند يا خير. در واقع از نظر ديويز همان بلايي كه تئوري نسبيت انيشتين و فيزيك كوانتوم بر فيزيك قرن نوزدهم وارد آورد حالا خود شاهد آن خواهد بود كه تئوريهاي جديد پايه و اساس اين تئوريها را متزلزل خواهد كرد. حداقل دستاورد اين مشاهدات اين است كه در بررسي ساختار كيهان و اين كه از كجا نشأت گرفته و به كجا تكامل پيدا مي‌‌كند يك گام رو به جلو برداشته شده است.
    تئوري نسبيت مي‌‌گويد كه سرعت هيچ چيز از نور فراتر نمي‌رود (سرعت نور در خلأ، تقريباً000ر300 كيلومتر در ثانيه است). آرزوي انسان فراتر رفتن از اين سرعت است و اين آرزوها در فيلمهايي مثل "Star Trek" انعكاس يافته‌اند. حتي اگر انسان ابزاري بسازد كه بتواند با سرعت نور حركت كند براي عبور از كهكشان راه شيري يكصدهزار سال وقت لازم است.
    منبع: MSNBC - روزنامه ايران شماره 2209
    مرجعي براي مطالعه‌ي بيشتر (به زبان انگليسي):
    http://www.abc.net.au/lateline/stories/s347215.htm

    منبع :www.irancivilcenter.com




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  9. #19
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    رنگها و موجها

    بدون ترديد نور خورشيد يكي از مهمترين نيازهاي زندگي روي كره زمين است. اما دامنه ويژگيهاي آن تنها به ايجاد زندگي و حيات در ميان جانداران ختم نمي‌شود. در سال 1665 ميلادي ، دانشمند بيست و سه ساله انگليسي به نام آيزاك نيوتن به مطالعه نور مشغول بود. او در يك روز آفتابي و درخشان ، شيشه‌هاي اطاق را به كمك پرده‌هايي ضخيم و بسيار تيره مسدود كرد، به گونه‌اي كه اطاق كاملا تاريك شد و از ميان شكاف كوچكي در ميان يكي از پرده‌ها ، باريكه‌اي از نور به درون اطاق مي‌تابيد. او اين باريكه نور را از ميان يك قطعه شيشه به شكل مثلث ، كه منشور ناميده مي‌شود، عبور داد. باريكه نور با گذشتن از ميان منشور ، در مسيرش خميده شد و شكست پيدا كرد.




    شكست نور در منشور
    نوري كه از منشور بيرون آمده بود در راستايي سير مي‌كرد كه اندكي با راستاي وارد شدنش به منشور تفاوت داشت و به ديوار مقابل مي‌تابيد. جالب آنكه ، هنگامي كه نيوتن منشور را از سر راه نور بر مي‌داشت، باريكه تنها لكه گرد سفيد رنگي را روي ديوار ايجاد مي كرد، در حالي كه وقتي منشور در مسير باريكه نور مي‌رفت، باريكه نور پخش مي‌شد و به صورت رنگين كمان در مي‌آيد! در يك سر اين رنگين كمان نور سرخ و در انتهاي ديگر نور بنفش ديده مي‌شد و در ميان آنها رنگهاي نارنجي ، زرد ، سبز و آبي قرار داشت. ما اينگونه رنگها را در اطراف خود مي‌بينيم و قادريم آنها را لمس كنيم، در حالي كه نيوتن قادر نبود نور را لمس كند، به همين دليل بود كه او نوار نور رنگي را طيف (Spectrum) ناميد كه در زبان لاتين به معناي روح است!

    به راستي اين رنگها از كجا مي‌آيند؟!

    نيوتن دريافت آن چيزي را كه چشمهاي ما به عنوان نور سفيد مي‌بينند در حقيقت مخلوطي از رنگهاي گوناگون است كه شكست آنها پس از منشور يكسان نيست و براي نور سرخ از همه رنگهاي ديگر كمتر و براي نور بنفش از همه بيشتر است. نيوتن براي اثبات شكستهاي متفاوت از دو منشور استفاده كرد و دوباره توانست نور سفيد را بدست آورد. اما هنوز يك سوال ديگر باقي بود و آن اين بود كه چرا نور بايد، رنگهاي مختلفي را دارا باشد؟!

    جنس نور

    نيوتن به دنبال جنس نور بود. دو نظريه در اين زمينه وجود داشت: اول آنكه نور از مجموعه‌اي از ذرات تشكيل شده است كه بر خطي راست و به سرعت در حال حركتند و دوم آنكه نور مجموعه‌اي از امواج است كه بسيار كوچكند و در مسيري مستقيم حركت مي‌كنند. نكته بسيار قابل توجه در مورد امواج اين بود كه آنها مي‌توانند خميده شوند، اين امر زماني رخ خواهد داد كه امواج با موانع برخورد كنند. شما مي‌توانيد خميده شدن امواج آب را در برخورد با موانع ببينند. همچنين صدايي را كه در يك طرف كنج ديوار مي‌شنويد، مي‌توانيد در طرف ديگر آن كنج نيز گوش كنيد، پس امواج صدا بايد در اطراف آن كنج خميده شده باشند. از سوي ديگر مي‌دانيد كه اگر نور به يك طرف كنج بتابد خميده نمي‌شود، به عبارت ديگر شما نمي‌توانيد شخصي را از طرف ديگري ‌از كنج ديوار مشاهده كنيد.
    به همين دليل بود كه نيوتن تصور مي‌كرد، نور جرياني از ذرات متحرك كوچك است، نه جرياني از امواج. اما همه دانشمندان با او موافق نبودند. يك هلندي به نام كريستين هويگنس نظريه موجي بودن نور را قبول داشت. او عقيده داشت كه امواج كوچك بسادگي امواج بزرگ خميده نمي‌شوند و اگر نور از امواج بسيار كوچك تشكيل شده باشد، به هيچ وجه خميده نخواهد شد! او با نيوتن مخالف بود، هر چند كه بسياري عقيده داشتند كه نيوتن بزرگترين دانشمند جهان است.

    با اين حال ، حتي ممكن است بزرگترين دانشمند جهان هم دچار اشتباه شود. شخصي به نام يانگ اين مشكل را حل كرد. او در كار طبابت و تنظيم دايرة المعارف بريتانيكا استاد بود و ختي نوشته‌هاي مصريان را براي نخستين بار ترجمه كرد. با اين وجود علاقه بسياري به آزمايشهاي مربوط به نور داشت. يانگ صوت را مطالعه كرد و فهميد هنگامي كه دو صدا به هم مي‌رسد، از هم مي‌گذرند.

    گاهي اوقات يك صدا ، صداي ديگر را كاملا حذف مي‌كند. اما اگر موجهاي صدا طولهاي متفاوتي داشته باشند، موج بلندتر از موج كوتاهتر جلو مي‌افتد و براي مدتي ، صدا بلندتر از حالت عادي خواهد شد، اما مدتي بعد سكوت برقرار مي‌شود و اين امر پي در پي ادامه خواهد داشت. اگر نور جرياني از ذرات باشد، اين وضع پيش نمي‌آيد، زيرا يك ذره نمي‌تواند ديگري را حذف كند. در سال 1801 ميلادي ، يانگ با فرستادن يك باريكه نور از دو شكاف باريك متفاوت بسيار نزديك به هم آزمايشي انجام داد.





    آزمايش دو شكاف يانگ
    در اين آزمايش دو باريكه نور خارج شده از شكافها ، ابتدا اندكي پخش مي‌شدند و هنگامي كه به ديوار مي‌رسيدند، بر هم مي‌افتادند. ممكن است تصور كنيد كه در جايي كه دو باريكه نور بر هم مي‌افتند، نور بيشتري وجود خواهد داشت و بنابراين ديوار روشنتر از جاهايي خواهد بود كه باريكه بر هم نيفتاده‌اند، اما به هيچ وجه چنين نيست. در جاهايي كه دو باريكه بر هم مي‌افتند، نوارهاي روشن و تاريك متناوبي ايجاد مي‌شود.

    باريكه‌هاي نور در نقاطي همديگر را حذف مي‌كنند و در نقاطي ديگر بر هم اضافه مي‌شوند و اين عمل بصورت متناوب و درست همانند صوتهاي موسيقي و تغييرات آنها صورت مي‌گيرد. هنگامي كه دو باريكه نور همديگر را حذف مي‌كنند، مي گوييم كه باريكه ها با هم تداخل كرده اند، يا اينكه تداخل ايجاد شده است. به اين ترتيب نوارهاي روشن و تاريك "فريزهاي تداخلي" ناميده مي‌شوند. با اين آزمايش مسأله حل شد و معلوم گرديد كه حق با هويگنس است و نيوتن اشتباه مي‌كرده است.

    طول موج نور

    نور از موجهايي بسيار ريز تشكيل شده است. يانگ از روي پهناي فريزهاي تداخلي توانست طول يك موج نور را محاسبه كند. اين طول را طول موج مي‌نامند. با اين محاسبه معلوم شد كه طول موج نور حدود 20000/1 سانتيمتر است. البته همه امواج نور داراي طول يكساني نيستند. نور سرخ بلندترين طول موج را دارد و نور بنفش كوتاهترين طول موج را دارا است. هر قدر طول موج كوتاهتر باشد، نور بيشتر شكسته مي‌شود و به همين دليل است كه منشور رنگها را از هم جدا مي‌كند.

    منبع: دانشنامه رشد




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




  10. #20
    Borna66 آواتار ها
    • 55,397
    مدير بازنشسته

    عنوان کاربری
    مدير بازنشسته
    تاریخ عضویت
    Mar 2009
    محل تحصیل
    خيام-سهراب
    شغل , تخصص
    طراح و تحلیل گر حرفه ای وب
    رشته تحصیلی
    مهندسي نرم افزار
    راه های ارتباطی

    پیش فرض

    حمله با سرعت نور



    از ديدگاه جنگى، ليزر يك پديده تقريباً فوق العاده بود. در ليزر به جاى دود و بوى بد و صداى گوشخراش مهمات جنگى از پرتوهاى نامرئى نور متمركز استفاده مى شود. جت هاى بازسازى شده بوئينگ ۷۴۷ كه به سلاح هاى ليزرى مجهز است، موشك هاى بالستيكى را شليك مى كند و چندصد مايل دورتر از جايى كه هستيم، به هدف برخورد مى كند. توپ هاى داراى انرژى هدايت شده مى تواند راكت هايى را كه از طرف دشمن شليك مى شود، باسرعت نور ره گيرى كند، مواد انفجارى داخل آنها را داغ كرده و باعث انفجار آنها در وسط آسمان شود. البته مواردى كه ذكر شد، يادى از تصورات ذهنى جنگ ستارگان دوران رياست جمهورى رونالد ريگان نبود. اينها طرح هاى جديدى است كه نقطه آغاز آن فقط به دهه قبل بازمى گردد و در آينده نه چندان دور به حقيقت خواهد پيوست. ليزر تاكتيكى پرانرژى (THEL) نيروى زمينى ايالات متحده در ميدان موشكى وايت سندز ((White Sands واقع در صحراى نيومكزيكو، چندين خمپاره و راكت كاتيوشا را منهدم كرد. در سال ۲۰۰۴ پيمانكاران نيروى هوايى آمريكا، شليك آزمايشى سلاح هاى ليزرى را كه به صورت شيميايى توليد شده بود، آغاز كردند. اين يك ليزر هوابرد بود كه بر روى يك بوئينگ اصلاح شده ۷۴۷ قرار مى گرفت.
    به يك باره به نظر رسيد كه تلاش هاى اخير براى اداره كردن ليزرهاى ميدان نبرد مانند پروژه جنگ ستارگان دهه ۱۹۸۰ از بين رفته است. توليد چندين مگاوات توان ليزرى براى منفجر كردن موشك به چندصد گالن مواد شيميايى سمى ( از قبيل اتيلن و ترى فلوئوريد نيتروژن) نياز داشت. بدين ترتيب حجم سلاح ها افزايش يافت. بدتر آنكه پس از چند شليك بايد گروه تازه اى از مواد واكنش دهنده به اين ليزرها تزريق مى شد. موضوع حمل و نقل اين مواد سمى، چه از طريق هوا و چه در طول ميدان رزم، لرزه بر اندام فرماندهان نظامى انداخت. پرسش هايى نيز در مورد چگونگى نفوذ موثر اين پرتوها در باران و گرد و غبار مطرح شد. سال گذشته نيروى زمينى آمريكا پروژه THEL خود را لغو كرد. بعضى از افراد فكر مى كنند احتمالاً جت ۷۴۷ كه براى شليك كردن پرتوها بازسازى شده به علت هزينه سنگين پروژه بعدى است كه لغو مى شود.
    البته هنوز زود است كه سلاح هاى ليزرى را از دست رفته بدانيم. پتانسيل پرتوى سلاح هايى كه با دقت زياد و تا فاصله دور مى تواند شليك كند، داراى اهميت زيادى از لحاظ نظامى است، به ويژه در زمانى كه سربازان آمريكايى در حال نبرد با دشمنان چريك مانندى هستند كه به سرعت در پس زمينه ميدان محو مى شوند. ژنرال برادلى لات يكى از فرماندهان سپاه تفنگداران دريايى ايالات متحده ((USMC مى گويد: «اگر مى شد براى مدت طولانى شليك كرد، بدون آن كه مجبور به بارگذارى مجدد سلاح باشيم، خيلى خوب بود. اين چيزى است كه ((USMC خيلى به آن علاقه دارد و در حال پيگيرى آن است.»
    اما اگر ليزرهاى شيميايى نتواند آن را برآورده سازد، چه چيزى باعث مى شود كه جنگ پرتوها تحقق يابد؟ پاسخ آن دو چيز است. اول آن كه پنتاگون كم كم اين موضوع را درك مى كند كه اگر نتايج مطلوب را مى خواهد، بايد انتظارات خود را پايين بياورد. به عنوان مثال ابتدا خمپاره و بعد موشك ها را مورد حمله قرار دهد. اما موضوع دوم كه از مورد اول مهم تر است، ظهور مجدد دو فناورى پروژه جنگ ستارگان (ليزرهاى الكترون آزاد و نيمه هادى) در آزمايشگاه هاى پرانرژى و پراميد دو همكار سابق است كه فكر كردند روياهاى آنها درباره پيروزى ليرز، سال ها پيش از بين رفته است.
    جهش به سرعت نور: همه ليزرها كم و بيش به يك روش كار مى كنند. انواع مشخصى از اتم ها را تحريك كنيد تا ذرات نور (فوتون ها) را تشعشع كند. اين نور را به عقب و به اتم هاى تحريك شده برگردانيد تا فوتون هاى بيشترى پديدار شود. برخلاف لامپ هاى حبابى كه نور آن در تمام جهت ها پخش مى شود، اين دسته از فوتون ها فقط در يك جهت منتشر مى شود. نور ليزر به جاى آن كه در همه قسمت هاى طيف فركانسى داراى درخشندگى باشد، داراى طول موج يكسان است كه بستگى به «واسطه مورد استفاده» دارد، يعنى نوع اتم هايى كه از آنها براى توليد پرتو استفاده مى شود. اگر مقدار كافى از نور متمركز را بتابانيم، اجسام شروع به سوختن مى كند.
    در نخستين آزمايش هاى ليزرى كه در دهه ۱۹۶۰ صورت گرفت، از كريستال هاى ياقوت به عنوان واسطه بهره بردارى استفاده مى شد. اما ليزرهاى حالت جامد اصولاً نمى تواند بيش از چندصد وات توان توليد كند. اين مقدار البته براى جراحى چشم خوب است، اما سرنگون كردن موشك (پديده اى كه نيروهاى نظامى خواستار انجام آن هستند) به توانى برابر ميليون ها وات نياز دارد. به همين دليل است كه پژوهشگران، تلاش هاى خود را به سمت ليزرهاى شيميايى معطوف كردند، كه در نهايت با شكست روبه رو شد.
    نوع ديگرى از ليزر وجود دارد كه براى توليد پرتو هيچ احتياجى به كريستال، (واسطه مورد استفاده) و مقادير زيادى از مواد شيميايى خطرناك ندارد. اين ليزر را ليزر الكترون آزاد (FEL) مى نامند. اين ليزر از جريان توربوشارژشده اى از الكترون ها براى شروع واكنش خود استفاده مى كند. اين نوع ليزر در برنامه پدافند موشكى ملى جنگ ستارگان روش غالب بود. اين پديده تقريباً همان پديده افسانه اى بود كه جورج نيل و باب ياماموتو (محققان آمريكايى) به اتفاق هم براى يك شركت پيمانكار نظامى به نام TRW به كار انداختند.
    اين طرح به دليل انتظارات توان بالا نيمه كاره ماند. هم آقاى نيل (پژوهشگر اصلى پروژه) و هم ياماموتو (يكى از مهندسان پروژه) به طرح خود اعتقاد داشتند. آنها فكر مى كردند كه با تحقيق و پژوهش كافى مى توان كارى كرد كه ليزر قادر به متوقف ساختن يك موشك سركش و مهيب باشد. موفقيت مورد نياز در فيزيك اتمى، فيزيك نور (اپتيك) و ابررسانايى، منافع زيادى در برخواهد داشت، حتى اگر هرگز نتوان ICBM (موشك هاى بالستيكى بين قاره اى) را از بين برد. اما پس از ۱۰ سال تلاش و صرف هزينه اى بالغ بر نيم ميليارد دلار، حداكثر توانى كه ليزر الكترون آزاد توليد شده در آزمايشگاه TRW داشت ۱۱ وات بود، يعنى يك دهم آنچه كه يك لامپ معمولى توليد مى كند.

    سرانجام پس از چند سال كه مجريان طرح به كار خود ادامه داده و وعده توليد توان هاى ۱۰ و ۲۰ مگاوات را مى دادند، پنتاگون در سال ۱۹۸۹ پروژه جنگ ستارگان را متوقف كرد. آقاى نيل به ويژه از طرح هاى ناشيانه و بى دقتى كه باعث خرابى اين برنامه شده بود و سبب شد كه ايده هاى او درباره انرژى هدايت شده وسيله استهزا و تمسخر ديگران شود، بسيار خشمگين و ناراحت بود. او تا سال ها پس از آن، در كنفرانس هاى علمى اى كه برگزار مى شد همچنان طرفدار از سرگيرى پژوهش در زمينه الكترون آزاد بود. نيل مى گويد: «مردم فكر مى كردند كه ما ديوانه هستيم و اين فناورى عملى نيست، البته با شواهد موجود نيز حق با آنان بود.»
    در اين حال ياماموتو به مدت ۱۵ سال پس از شكست مفتضحانه جنگ ستارگان، خود را از پروژه هاى نظامى دور نگه داشت. او براى كار به آزمايشگاه ملى لورنس لايورمور (شريك تجارى TRW در زمينه ليزر الكترون آزاد) رفت تا آهن رباهاى مخصوص آزمايش هاى فيزيك انرژى زياد را بسازد. اين آزمايشگاه نزديك شهر بركلى واقع در ايالت كاليفرنيا بود؛ همانجايى كه ياماموتو در آن بزرگ شد و به مدرسه و كالج رفت. بدين ترتيب جابه جايى مذكور اين فرصت را به او داد تا با كمك دوستان قديمى خود به بازسازى خودروهاى وارداتى (مانند تويوتا و داتسون) بپردازد. باب ياماموتو در گاراژ و آزمايشگاه شهرت زيادى در زمينه انجام كارهايى كه به دشوارى صورت مى گرفت، به دست آورد. ياماموتو به دليل همين پشتكار و همچنين تجربه قبلى در زمينه ليزر در سال ۲۰۰۳ توسط وزارت دفاع آمريكا براى اجراى پروژه ۵۰ ميليون دلارى ليزر حالت جامد در لايورمور كه پنتاگون بر روى آن سرمايه گذارى كرده بود، انتخاب شد. اين فناورى كه روزى به نظر مى رسيد غير علمى باشد، با پيشرفتى فراتر از حد انتظار، احيا شد. ياماموتو همان احساس آرامشى را كه در ليزرهاى الكترون آزاد داشت، در مورد فناورى حالت جامد نيز به دست آورد. او مى گويد: «سلاح هايى با انرژى هدايت شده، چيزى است كه محققان بيش از ۳۰ سال است در پى آن بوده اند و من مى خواهم نخستين كسى باشم كه مى گويد ما آن را به دست آورده ايم.»
    سلاح ساخته شده: مهمات موجود در ليزر جديد حالت جامد ياماموتو، مجموعه اى از لوحه هاى شفاف به وسعت ۴ اينچ مربع (حدود ۲۵ سانتى متر مربع) است كه با ارغوانى كمرنگ، رنگ آميزى شده است. اين لوحه ها دقيقاً همان چيزى است كه مى توان انتظار داشت براى راه اندازى توپ هاى مستقر در هواپيماى «اينترپرايز» يا «فالكون ميلنيوم» مورد استفاده قرار مى گيرد. البته خشاب اين لوحه هاى شفاف دقيقاً بى نهايت نيست.
    اين سلاح ها براى هر ۱۰ ثانيه اى كه شليك مى كنند حداقل به يك دقيقه زمان نياز دارند تا خنك شوند. اين لوحه ها از جنس سراميك هستند كه با عنصر نئوديميوم تركيب شده است. هنگامى كه اتم هاى اين عنصر تحريك شود، فوتون هايى توليد مى كند كه نهايتاً به صورت پرتوهاى ليزر درمى آيد. لوحه هاى مذكور هيچ گاه خالى از نيرو نمى شود و دردسر كار با آنها بسيار كمتر از ظروف حجيم مواد شيميايى است. استفاده از اين لوحه ها دليل اصلى اين موضوع است كه ماشين يا ماموتو در آزمايشگاهى به طول ۹ متر جاى مى گيرد. تصور اين واقعيت چندان دشوار نيست كه تمام اين دستگاه در يك كاميون كوچك گنجانده مى شود و خمپاره ها را به آسمان مى فرستد. يك ليزر حالت جامد مانند اين اكنون مى تواند منطقه جنگى كوچكى را تشكيل دهد. منفجر كردن يك ICBM از فاصله ۱۵۰ كيلومترى به چندين مگاوات نور پرانرژى احتياج دارد. ليزرهاى حالت جامد هرگز نمى تواند تا اين حد پرقدرت باشد. اما گرم كردن يك خمپاره از فاصله ۵/۱ كيلومترى تا اندازه اى كه مواد انفجارى داخل آن منفجر شود فقط به توانى معادل ۱۰۰ كيلووات نياز دارد. يا ماموتو ده ها بلوك آلومينيوم و فولاد كربنى را نشان مى دهد. هر يك از اين بلوك ها ۵/۲ سانتى متر ضخامت و ۵ سانتى متر ارتفاع دارد. بر روى تمام آنها علائم سوختگى ديده مى شود. يكى از بلوك ها كه با علامت«۰۵-۶-۶» مشخص شده است تقريباً به طور كامل و به اندازه يك سكه معمولى داراى تورفتگى است. طنابى كه از فلز ذوب شده ساخته شده است به انتهاى بلوك چسبيده است. ياماموتو با صداى زير و با يك لبخند كودكانه مى پرسد: «آيا مى توانيد باور كنيد؟» او خيلى جوان تر از سن واقعى خود (۵۰ سال ) به نظر مى رسد. وى مى گويد: «درست مانند درخشش لامپ و جسم در حال ذوب شدن است، واقعاً خنده دار است.» ليزر موسسه لايورمور كه با لوحه هاى بزرگتر به حركت رو به جلوى خود ادامه داد و سرعت جهش را بيشتر كرد در مارس ۲۰۰۵ موفق شد به توان ۴۵ كيلووات دست يابد. اين مقدار بيش از سه برابر توانى است كه ليزر در سه سال پيش از آن مى توانست توليد كند اما در روزى كه من براى تماشاى آزمايشگاه لايورمور رفتم تنش عصبى آنجا را فرا گرفته بود. هر يك از لوحه ها به وسيله رشته اى شامل ۲۸۸۰ ديود نور افشان (LED) احاطه شده است. هنگامى كه اين ديودها نور از خود ساطع كرده و مى درخشد باعث تحريك اتم هايى در تركيبات سراميكى نيمه شفاف شده و واكنش زنجيره اى ليزر آغاز مى شود. مشكل آن است كه هر چقدر ديودها بيشتر بدرخشد اختلاف حرارتى كه كيفيت پرتو را كاهش مى دهد نيز بيشتر مى شود. پرتو مادون قرمز كه براى چشم غير مسلح قابل ديدن نيست كم كم بخشى از كيفيت خود را از دست مى دهد كه پديده مطلوبى نيست، زيرا پنتاگون مايل است كه پرتو زيبا، سخت و نيرومند داشته باشد. قرار است گروهى از كارشناسان وزارت دفاع براى آزمايش اين پرتوها به اين آزمايشگاه بيايند. حضور آنها تا حد زيادى تعيين مى كند كه آيا گروه متخصصان لايورمور مى تواند بودجه مورد نياز را براى ساخت ليزر آينده خود (كه يك ماشين تسليحاتى با قدرت KW100) دريافت كند يا نه. بنابراين گروه ياماموتو در حال انجام آخرين اصلاحات بر روى «اپتيك تطبيقى» است. آينه هايى با بيش از ۲۰۰ بازوى فعال كننده نصب شده است تا اعوجاج هاى ايجاد شده در پرتو را برطرف كند. ياماموتو به طور مودبانه اى عذرخواهى مى كند: «خيلى معذرت مى خواهم ولى ما زير فشار هستيم.»
    جنبش: چند روز بعد هنگامى كه جورج نيل را ملاقات كردم به نظر مى رسيد كه چندان عجله اى در انجام پروژه ندارد. اين مرد لاغر ۵۸ ساله كه دونده استقامت نيز هست (به تازگى يك مسابقه دوى فوق ماراتن به مسافت ۱۲۵ كيلومتر را در كانادا به پايان رساند)، بيش از ربع قرن است كه درصدد ايجاد ليزر الكترون آزاد است. البته چند سال ديگر نيز طول مى كشد تا آقاى نيل بتواند دستگاهى همانند ماشين حالت جامد آقاى ياماموتو بسازد بنابراين او وقت كافى دارد تا آزمايشگاه خود را به من نشان دهد. اين آزمايشگاه كه «تاسيسات شتاب دهنده ملى توماس جفرسون» نام داشته و متعلق به وزارت انرژى آمريكا است در شهر نيوبورت نيوز ايالت ويرجينيا قرار دارد.نيل درى را كه به صورت مغناطيسى قفل شده است باز مى كند. درونش مجموعه
    درهم برهمى شامل ۷۵ متر لوله مسى، شلنگ هاى لاستيكى و لوله هاى فولادى با اندازه هاى مختلف وجود دارد. تقريباً همه آنها به اين منظور طراحى شده است تا يك كار انجام دهد: توليد انبوه پالس هاى پرقدرتى از الكترون ها كه با ۹۹/۹۹ درصد سرعت نور حركت كند. الكترون ها از ميدان هاى ميكروويو به دقت زمان بندى شده عبور مى كند و در طول مسير سرعت و قدرت خود را به دست مى آورد. آنگاه پرتو الكترونى به وسيله يك «تحريك كننده» فرستاده مى شود. اين تحريك كننده از يك رشته ۲۹ عددى آهن ربا تشكيل شده است كه جريان الكترون ها را به طرف بالا و پايين خم مى كند. در اين فرآيند الكترون ها فوتون منتشر مى كنند و واكنش زنجيره اى ليزر آغاز مى شود. اين واسطه مورد استفاده نيل و پاسخ او به لوحه هاى شفاف ياماموتو و گازهاى سمى ليزر شيميايى او است. با افزايش توان و كيفيت همين پرتو الكترونى بود كه جورج نيل توانست در فناورى خود پيشرفت كند. قابل تنظيم بودن FEL چيزى است كه فرماندهان نظامى در وهله اول به آن علاقه دارند. بيشتر ليزرها در هنگام حركت قدرت خود را از دست مى دهند و به وسيله اتمسفر جذب مى شوند. تنها مقدار كمى باران كافى است تا اوضاع بدتر شود اما يك FEL مى تواند از هر طول موجى كه در هوا جريان پيدا مى كند به بهترين شكل ممكن استفاده كند. موضوع «خالى شدن خشاب بى نهايت» نيز پيش نمى آيد.
    تعجبى ندارد كه آقاى دوگلاس بيسون مدير آزمايشگاه ملى لس آلاموس آن را «جام مقدس ليزرها» ناميده است اما آيا كسى مى تواند مانع آن شود؟ پس از پروژه جنگ ستارگان آقاى نيل همچنان به كار خود ادامه داد و در انتظار فناورى مورد نياز بود. وى ۵ سال در آزمايشگاه توماس جفرسون و بر روى يك دستگاه شتاب دهنده بزرگ ذرات كار كرد. رئيس آزمايشگاه به اين موضوع خوش بين بود كه نيل مى تواند FEL را بسازد. سرانجام در سال ۱۹۹۵ هنگامى كه وقت آن رسيد كه ماشين سرهم شود نيل و گروه تحت سرپرستى او يك FEL جديد را طراحى مى كند كه مى توانست نورى را با قدرت يك كيلووات توليد كند كه البته خيلى كمتر از ليزرهاى پرقدرتى بود كه آنها در اوايل دهه ۱۹۸۰ وعده آن را داده بودند. در سال ۱۹۹۹ آنها موفق شدند كه توان FEL مدل جنگ ستارگان را صد برابر كنند. در سال ۲۰۰۳ توان FEL جديد به ركورد تازه ۱۰ كيلووات رسيد. آقاى نيل با لبخندى حاكى از رضايت مى گويد: «من هميشه اعتقاد داشتم كه فناورى به اين نقطه مى رسد به شرطى كه ما گام هاى محكمى را با اهداف منطقى برداريم.» اكنون نيل مجدداً توجه فرماندهان نظامى آمريكا را به خود جلب كرده است. وزارت دفاع آمريكا در حال سرمايه گذارى ۱۴ ميليون دلارى طى يك سال روى ابزار او است.
    بحث بر سر اين موضوع ادامه دارد كه بهتر است نسل آينده ناوشكن هاى نيروى دريايى با ليزرهاى الكترون آزاد مجهز شود. امروزه كشتى ها فاقد دقت تسليحاتى لازم هستند كه بتوانند حملات قايق هاى كوچك و راكت ها را متوقف كنند. (مانند حمله اى كه قايق متعلق به گروه القاعده در سال ۲۰۰۰ عليه كشتى USS Cole انجام داد) ليزر مى تواند اين وظيفه را به خوبى انجام دهد فقط يك ليزر الكترون آزاد را مى توان تنظيم كرد تا هواى بالاى اقيانوس را بشكافد. در دسامبر ۲۰۰۵ خبر خوشى به جورج نيل رسيد. نيروى دريايى تعهد مناسبى را در به كارگيرى FEL بهبود يافته قبول كرد؛ مبلغ ۱۸۰ ميليون دلار براى يك برنامه هشت ساله چند گروهى. نيل مى نويسد: «چالش سختى فراروى ما است ولى حداقل ما كار را آغاز كرده ايم.» طرح شركت Northrop چندان تفاوتى با طرح ياماموتو نداشت فقط به جاى ۴ لوحه شفاف و بزرگى كه در هسته ماشين ياماموتو قرار داشت Northrop از چندين كريستال كوچكتر استفاده مى كرد. انرژى كمترى بر روى هر كريستال متمركز مى شود بنابراين نقايص كمترى در پرتو ايجاد مى شود. آقاى جف سولى مدير برنامه شركت نورث روپ كه بيش از ۳۰ سال سابقه كار در زمينه انرژى هدايت شده دارد، مى گويد: «تعجب مى كنم كه از يك قطعه شيشه كه به اندازه يك آدامس است چقدر انرژى مى توانيم بگيريم.» پنتاگون ۳۳ ماه به سولى وقت داده است تا ماشين خود را به قدرت مورد نياز ميدان رزم برساند. در اين حال ياماموتو به رغم تصميم پنتاگون عليه او به افزايش آرام كيفيت ليزر خود ادامه مى دهد. او ياد گرفته است كه در دنياى تجارت هر اتفاقى ممكن است رخ دهد.
    Popular Science, May.2006




    فروشگاه نمونه سوالات پیام نور با پاسخنامه تستی و تشریحی



    دانلود رایگان نمونه سوالات دانشگاه پیام نور





    http://up.pnu-club.com/images/00ld7yux3ay3itvspd7n.png
    برای دانلود رایگان نمونه سوالات پیام نور با جوابهای تستی و تشریحی در مقطع نمونه سوالات کارشناسی ارشد پیام نور - نمونه سوالات پیام نور کارشناسی - نمونه سوالات پیام نور دکترا- نمونه سوالات آزمونهای فراگیر پیام نور( دانشپذیری)

    به ادرس زیر مراجعه کنید

    نمونه سوالات رایگان پیام نور




صفحه 2 از 3 اولیناولین 123 آخرینآخرین

برچسب برای این موضوع

مجوز های ارسال و ویرایش

  • شما نمی توانید موضوع جدید ارسال کنید
  • شما نمی توانید به پست ها پاسخ دهید
  • شما نمی توانید فایل پیوست ضمیمه کنید
  • شما نمی توانید پست های خود را ویرایش کنید
  •